Table of Contents
Oracle® RAD fOr OPENYIMS..... .. e eaee et eeeeee e et s et s s et s st s s s s e s s s s s e s enennnene e 1

RS (ST oY L0 (TR
T)VZ=T 0] =) 2 0L TR
[0 11 (=Y 11T

a1 7= 161 TR

PUIPOSEOF THIS IMBINUAL.ceieiiiiiiiiiiieieieee ettt ettt ettt ettt et e e et e et e e et e e e e e et e e e e eaeaaaaaaaeaaaaaaaaaaaaaaaaaaaaens €

1Y aTo [=Yo [N Lo (=] ol = TR |

[T Yo U 1< 1 A {0 (T :

Chapter linstalling Oracle RAD Rele8SE7.1.0.1.......coceiiiiiiiiiiiiiieeeei e e e e e e e 9
=T o LU= 0T 01 TP P PP EP PRSPPI 1
1.21INVOKING VIMSINSTAL ..o 11
1.3 StoppPINA the INSTANBTIONeeeeeeeeiiiiiiiie et e e et e e e e e e e e e e e e e b e e e e e e e e nnnneees 12
1.4 After Installing Oracle RAD...........ooiiiiii et e e e e e e e e 13
1.5Alpha EV68 ProcessSOrSUPPOIT AQAEA.eeeiiiiiitiieiiieeee ettt e e et e e e e e r e e e e e s s e e e e e e e e e annes 14
1.6 Maximum OpenVMS Version CheCKAAAEM..........ouuiiiiiiiiiiii e 15
Chapter 2Software Errors Fixed in Oracle Rdb Releaser.1.0.1.........ocouviiiiiiieeiiiiiiiiiiei e 16

2.1 Software Errors Fixed That Apply t0 All INterfaces. ..o, 17
2.1.1ExcessiveDisk I/0 for DROPTABLE andTRUNCATE TABLEcoviieieeeeeeeeeee e 17

2.1.2LIST StorageMap Not UpdatedUponALTER or DROPTABLE..........ovviiiiiiiiiiiiiieeieeeeeeeeeeee 17
Y N =Tl =11 1Y (=Y o A 17
2.1.4CLEAN BUFFERCOUNT ParameteNOt ODEYEM.........cccoeiiiiiieeeeeeeeeeeeeeeeees 18
2.1.5DETECTEDASYNCHRONOUSPREFETCHTHRESHOLDNoOt Obeyed..........cccccccvnnnnnnes 18
2.1.6Pagel ocksNot Demotedat Endof TransactiodVhenFAST COMMIT Enabled................... 18
2.1.7BitmappedScanCausedfugcheckon Transactionrermination...................eeeeeeeeeeeeeeeeeeeeeeeenne. 18
2.1.8ProblemaNith COIUMNOULIINESccuuiienieiiie it ee it e et e et et e e e s saa s s s e s s eaasesaaseaaa e sansesens 19
2.1.9CountScanOptimizationincorrectlyReturningCountof O............coooeieiiiieiieieiecees 20
2.1.10DisablingAlJ WhenRow CacheRecoveryRequUIred...........ccccvvvvveeiiiiiiieiiieceeeeeeeeeeeeeeeeeee e 20
2.1.11BitmappedScanProblemWith LargelNdEXES.uuuuuuuuururruieerineeneeeenneeennnerenneneeseneeeneeeenenneees 21
2.1.12QueryWith Rangelist OR Predicate ReturnsWrongRESUILS.uveeveriiieiieeiieiiieiieeeeeeeeee. 22
2.1.13DatabaséorruptionUsing ClusterWith GalaxyandNon—GalaxyNodes.............cccceeeeeennn... 23
2.1.14PerformancéroblemsvhenRDMS$BIND_SNAP_QUIET_POINTDefinedto O................... 24
2.1.15WorkloadlgnoredWhenLoadedwith RMU/INSERTOPTIMIZER_STATISTICS.............. 24
2.1.16DescendindsortNot ProducingCorrectOrderingfor BIGINT andDATE Columns............. 25
2.1.17BitmappedScanincorrectlyChosery OPtIMIZEL.........cvvvviiieiiieiiiiiieeeeeeeeeeeeeee e 25
2.1.18CannotConnectWith RemoteAccessWhenUsingalogical...........cccceeeeeeeeeeiiiieeeeee, 26
2.1.19QueryJoiningDerivedTablesof Union LegsWith Empty TablesReturnsWrongResults...27

Table of Contents

2.1.20Left OuterJoin QueryWith OR PredicateReturnSWrongRESUILSuvueiveeiiiiiiiiiiiiiiiiiines 29
2.1.21QueryUsingMatch StrategwVith DISTINCT FunctionReturnsWrongResults................... 30
2.1.22GROUPBY QueryWith SUM AggregateReturnadWrongRESUILS.............uvvmeimmeiiniiieiiniiennns 32
2.1.23ROLLBACK HangsUnderDECdtmWhenCalledFromanACMS CANCEL Procedute....34
2.1.24COMPUTEDBY ColumnsNow AutomaticallyReserveReferencedables......................... 34

A O] I 1 (o 6T =0 RPN 3
2.2.1Command.ine RecallExpandedo 255 LINES......cccoiiiiiiiaeieeeieeeie e eeeeeeeeeeeeenennees 36
2.2.2New Minimum Valuefor theINTERVAL LeadingPrecCiSion.........coooeeeieeiieeeieeeeeee e 36
2.2.3IncorrectProcessingf CASE EXPIrESSION......cciiiiiiiii i e e e eeeeeeeennees 36
2.2.4ALTER TABLE Not DroppingNOT NULL ConstraintdVhenNULL ClauseUsed............... 37
2.2.5SomeConstraintDefinitions Not Supportedor AUTOMATIC ColumNnS.......ccceeeeeeeeeeeeeeeennnnn. 38
2.2.6%RDB-E-NO_DIST_BATCH_LError WhenExecutingSET TRANSACTION.........ccccuvn.e. 39
2.2.7SelectWith Identical" NOLIN" CIAUSES........u.iiienieiii e e e e e et e et e e e s e s e e rbe e s e e eraans 39
2.2.8KeywordMatchingNow Reporteddy INteractiveSQL.........ccooeeeieeiiieieee e 39
2.2.9CREATEMODULE BugcheckdVhena Subselecis Usedasa ParameteDEFAULT............ 40

2.2.100bsoleteMetadataErrorsWhenUsingRdb SQL V7.1 to AccesOracleRdbV7.0
D212 0= (Y=Y TN 4

2.30r8CI8 RIMU ETTOIS FIXEO. ... ieuiieiie ettt ettt ettt ettt et e e e e e e et et e e e e e e e e e e e e e e eeneeenaeenneens 44

2.3.1RMU ExtractNot FormattingView ColumnEXpressionEorrectly..........ccoovvvvervneiiniiieninennnnns 44
2.3.2RMU/UNLOAD/AFTER_JOURNAL FragmentedRecord<Clarification................................. 44
2.3.3RMU/DUMP/BACKUP Did Not Checkthe VMS BYPASSPIiIVilege..........uuvvvveeirerieeeiieeenennne. 45
2.3.4RMU/BACKUP Invalid Volume 1 TapelLabelWhenUsedWith COMPAQSLS.................... 45
2.3.5RMU/ANALYZE/CARDINALITY FailsonDatabase8Vith Local TemporaryTables........... 46
2.3.6File NameNot DisplayedBy RMU /RESTOREfor ExtendFailure................cccooeeeeeeeeeenneenn. 47
2.3.7RMU/SHOWSTATISTICSAllowed Suspendf DisabledABS.............ccovvvviviiievieeiieeiieeeeeeeen, 47
2.3.8RMU/COPY/BLOCKS_PER_PAGEanCorruptCopiedDatabaséJniform Areas............... 47
2.3.9DROPpedStorageAreaandRMU /VERIEY iN CIUSTEL.........uuuruieiiiiiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeens 48
2.3.10RMU /VERIFY ChecksAll StorageAreaFileS IS,uuurieiieiiiiiiiiiiieeeieeeeeeeeeeeeee e 48
2.3.11RMU/SHOW STATISTICSMulti—PageReportFile...........c.oovvvviiiiiiiieeee 49
2.3.12Areal ocks DemotedStatisticNot Always Correctlylncremented............cccccevvevvenvinneinenennnn. 49
2.3.13RMU /BACKUP /ONLINE /INOQUIET _POINTFAIIS......cccvvtutiiiieeeeeeieeiiiiie e e e e e eeevvnn e 49

2.4L0gMINEIr EITOIS FIXEA...coiiiiiiiiiiiiiiee et 50
2.4.1LogMiner CompresseRre—DeletdRecOrdCONIENT.ccooeiiiieiiieeeeeeeeeeneeeeeeeeees 50

2.5 Optimizer ProblemsFixed in Oracle RAD ReleasEr.1.0-......ccooiiiiiiieiieeeieeee e 51
2.5.1QueryHaving OR CompoundPredicate$Vith SubquenReturnsVrongResults................... 51
2.5.2QueryUsing OR/AND Predicate®Vith EXISTS ClauseReturnsWrongResults.................... 51
2.5.3QueryUsing GermanCollating Sequenc&®eturnsWrongRESUILS.............euvvveeiieiiiiiiiieiiiiieeeee. 53
2.5.4Left OuterJoinQueryReturnsWrong ResultsWhenON ClauseEvaluatedo False................ 53
2.5.5QueryWith Two IN Clause®n Two SubquerieReturnsWrongResults................ccoeeeeeee. 54
2.5.6QueryHaving SameSUBSTRINGsWithin CASE ExpressiorReturnsWrongResults........... 55
2.5.7AggregateQueryWith NestedMIN FunctionReturnsSWrongRESUIS.........oovvvevviveiiiiiieeineeenn, 57
2.5.8Querywith UNION SubselecReturndWrongRESUIS...........covvvviiiiiiiiiiiee 58
2.5.9Querywith CONCATENATEin BETWEEN ClauseReturnsWrongResults......................... 59

2.5.100RDERBY QueryWith GROUPBY on Two JoinedDerivedTablesReturnsWrong
oY1 U1 LT €

Table of Contents

2.5.111 eft QuterJoin QueryWith CONCATENATE ReturnsWrongResUltS...........eeevveveeeiveenenneee. 62
2.5.12QueryWith UNION in GermanCollating Sequenc®eturnsWrongResults........................ 63
2.5.13QueryWith OR Predicateon AggregateColumnReturnsWrongResultS..........cccevvvvvvveeneen.. 64
2.5.14QueryWith Equality Predicatdncludedin IN ClauseReturndVrongResults....................... 66
2.5.15Match Strategyon Columnsof Different Size,Using Collating SequenceReturnsWrong

LS ToX U 1K €
2.5.16Left OQuterJoin QueryWith CAST Functionon USING ColumnBugchecks........................ 68
2.5.17QueryUsing Constanivaluesin OR PredicateReturndWrongResults.................cccooeeee. 69

(O T o] = G o] V(0= 0 0T =T 01 SRR 7]

3.1 EnhancementsProvided in Oracle RAD RelEASE7.1.0. L. .. coeuiieiieiiee ettt e e 72

3.1.1SQL Now Supportsa Native ABS FUNCLION..........coiiiiiieiieeeeeeeeeeeeeee e 72
3.1.2New DUMP OutputFormatfor LOGIMINET........ccooiiiiee oo eeeeeeeeenees 73
3.1.3DataandSPAM PrefetchScreensAddedto RMU/SHOWSTATISTICS....coviieeiiiiieiieeeiies 74
3.1.4RMU/SHOWSTATISTICS Stall Log Lock InformationOptional.................eeeveeeeeeieeeeeeeeeeeneen. 75
3.1.5New Optionfor the GET DIAGNOSTICSStatemMent........cccoeeiieeeieeeieeeeeeeeee 75
I Y N LY F= L (=Y @ L1 T o 76
3.1.7Field WidthsWider on Row CacheOverviewDISPIaY............couuviiiiieiiiiiiieiieeeeeeeeeeeeeeeeeee e 79
3.1.8FOR CountedL00p ENNANCEMENIS.iiiiiieiiiie et 79
3.1.9Enhancement® SETDISPLAY Statemenfor InteractiveSOL.......cccoeeeeevvveiiiiiiiiiieeeeeeeeviiiinnnn. 81
3.1.10NeWBITSTRING BUIlt 1N FUNCLION......cituiiitieii et e e e et e s e e e e s e e e eaaas 83
3.1.11New SETPAGELENGTH Commandor InteractiveSQL...........cuveeiiereeiiiieiiiiiieee e eeeeviinann, 84
3.1.12NewWALTER CONSTRAINT StAEMENE. . ..cuniiienieiiiee i e e e e e e s e e e s aaaas 84
3.1.13DECLARE VariableNow SupportSCHECK CONSLIAINT.........uuuerreeiieeieeiiieiieeeeeeeeeeeeeeeeeeeeeeeeens 87
3.1.14RMU/SHOW STATISTICSActive UserStall MessageSortedby ProcesdD.............c......... 88
3.1.15RMU /REPAIR/INITIALIZE ONLY_LAREA_TYPE KEYWOId.........cvvveeeieeiiieeieiiieeeeeeeeeenee. 88
3.1.16RMU/SHOWSTATISTICSClusterDataCollectionPerformancé&nhancement................. 89

3.1.17RMU ExtracthasEnhancedExtractof ConditionalEXPressions..........cccoeeeeeeeeeeeeeiee e, 89

Chapter 4Documentation Corrections, Additions and Chandes........ccooovveiiieiieiieeeeeeeeeeeeeeeeeeeeee e, 90

4.1 DOCUMENEATION COITECIIONS ...t etueereeeseet e et e e e et et e e et e et eea e eea e e s ee e e ea e ee s e ea e ea e e e ea e e eneeenseenreenrennreenaeenaennes 91
4.1.1DROPINDEX Now anOnline TableOperation. eeuueeueeeeieeieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeees 91

4.2 Addressand PhoneNumber Correction for DOCUMENTALIONu.ieneeeeee e e et e e e e e e e eeareeeees 92

4.3 0nline DocumentFormat and Ordering INfOrmMationueeeeeiiiiiiiiiiiiiiiireeeeeeee e 93
4.3.1Documentationn AdObDEACIODALEOIMIAL. ieee ettt et et e e e e enaeees 93

4.3.2Documentationn HTIML fOIMIAL ieiieeee ettt et et et e et e e e e e e e e e e e e e eerennranns 93

4.4 DocumentatioNTOr TS REIEASE.oeeiee et ettt e ettt e et e et e e e e e e e e e e e eenns 94

4.5 Updated Documentationfor Oracle Rdb—related ProduCtS..............uuueueieiiieiiimiiiiiieeiieeeieeieeeeeeeeeeeeeeeees 97

4.6 New and ChangedFeaturesin Oracle RAD RelEASET.L...........uuuuuiuuiiiuiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 98
4.6.1PERSONAIs Supportedn OracleSOL/SEIVICES.......coiieieeeeieaeiaeeieeeeeneeeeeeeeeeneeenneeenee 98
4.6.2NEXTVAL andCURRVAL Pseudocolumn€anBe Delimitedldentifiers........cccccovvevveevneennnes 98

4.6.30nly=select_lisQualifier for the RMU Dump After_JournalCommand..................eevveeeeeeneee. 98

Table of Contents

4.7 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases...................cceeee.... 100
4.7.1Restrictiond.ifted on After—ImageJournalFiles. ... 100
4.7.2Changedo RMU ReplicateAfter_Journal.. Buffer Command............ccccoeeeeiiieiiine. 100
4.7.3Unnecessarcommandn theHot StandbyDocumentatian...............cceeeeeeeeeeeeeee e, 101
4.7.4Changdn theWay RDMAIJ Servers SetUpin UCXcoooiiiiieiieiieeeeeeeeeeeeeeeeeeeeeeeee e 101

4.8 Oracle Rdb7 for OpenVMS Installation and Configuration GUIde.............ooeeeeeiiieriieiiee e 103
4.8.1Suggestiono IncreaseSH_RSRVPGCNTREMOVEM........cooeeiieeiieeieeeeeeeee e 103
4.8.2PrereqUISIEESOIWAIRcoie e ————— 103
4.8.3Definingthe RDBSERVERLOQICAINGME.......ccooiiiie e 103

4.100racle RAb7 SQL ReferenNCEMANUAL.........c.uuuuiiiii e e e e e e e e e e e e e rr e e e e e e 106
4.10.1Clarificationof the DDLDONOTMIX Error MESSAge......ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 106
4.10.2NodeSpecificationAllowed on ROOtFILENAME ClaUSES........uuvvverriiiiieiiieeiieieeereeeeeeneeeneee 106

4.10.3IncorrectSyntaxShownfor Routine—Clausef the CREATE MODULE Statement........... 107
KO L@ g a1 T=Te ST ol IS = =Y 1 1<) 01 TP 107

4.10.4.1QUIET COMMIT. ...cooiiiiii oo nnne 107
4.10.4.2COMPOUNDTRANSACTIONS. ... eeeeeeeeeeereeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeees 108

4.10.5SizeLimit for Indexeswith KeysUsing Collating SEQUENCES............uuwueeereereeereeereeereeeeeeeee 109
4.10.6Clarificationof SETFLAGS OptionDATABASE_PARAMETERS......ccooiiiiiiiinnns 109
4.10.7IncorrectSyntaxfor CREATE STORAGEMAP StatemMent...........ueeveeeeeeieeeiiiiieieeeeeeeeeeeeeeen. 110
4.10.8Useof SQL_SQLCAIncludeFile Intendedfor HostLanguageFile...........ovvvvevvevviieniennnnn... 111
4.10.9Missing Informationon TemporaryTableS..........covvivviiiiiiii e 112

4.110racle RMU ReferenceManual, REIEASET.Q.........veuierieieeie et e e e e e e aeenas 113
4.11.1RMU UnloadAfter JournalNull Bit Vector ClarifiCation...........oveeeeeeeeeeeeeeee e eeaeenns 113

4.11.2New Transaction_Mod@®ualifier for OracleRMU Commands...........ccuvvieeeeeeeeeereevvinnnnnnnn 115
4.11.3RMU ServerAfter_JournalStopCommand...........ooooiiiiiiiiiiie e 116
4.11 4incompleteDescriptionof ProtectionQualifier for RMU BackupAfter_Journal

(@) 21]127= 1 11
4.11 5RMU ExtractCommandOptionSQUAIITIEE.covviviiiiiiiii e 117
4.11.6RDM$SNAP_QUIET_POINTLOQICAlIS INCOMECLcciiiieiiiiieeeeeeeeciiiiiie e e e e e e eeiieeeeeeeeeeeennnes 117
4.11.7Using DeltaTime with RMU ShowStatisticSCOmMMAaNd.............evveeereeiieeiieeiieieieeeeeeeeeeeeeeeee. 117

4.12.20racleRdDLOGICAINAMIES.ottt se e e e s e s ee e e e e e e e 118
4.12.3Waiting for ClIENtLOCK MESSAQE. eseesesseeeseeseeeseeneees 118
4.12.ARDMSS$TTB_HASH_SIZBE 0QIiCAINAME.......cciiiieiiieeeeeeiiiiiiite e e e e e ssieere e e e e e s ennreeeeeeeeeeannnnns 119
4.12 .5Errorin UpdatingandRetrievinga Row by DbkeyExample3=22.............ccccoeeeeeiiinn. 120
4.12.6Errorin Calculationof Sortedindexin EXample3—=46.............ccoeieiiiiiiiiiiiiiieeecee e 121
4.12.7DocumentationErrOrin SECHONC. 7.....ouunieei e ee et e e e e s e e e e e s e e e s e s s e e eaaaas 121
4.12.8Missing TablesDescriptiondor the RDBEXPERTCollectionClass..........ccoceeeeeinnnnnnnnnnnns 122
4.12.9Missing ColumnsDescriptiondor Tablesin the Formattedatabase............cccccoeeeeicinnnnns 122
4.12.10A Wayto Findthe Transactiorilype of a ParticularTransactionVithin the Trace

(D21 0 Y= 1] < T 13

4.12.11UsingOracleTRACE CollectedData..........cceveeiieeiieeeeeeeeeeeeeeeee e 130

Table of Contents

4.12.12A1P LengthProblemdn Indexeghat Allow DUPIICAtES..........uvvvrrerriieiiiiiiieiiiiiieieieeeeeeeeeeee 131
4.12.13RDM$BIND _MAX_ DBR_COUNT DocumentatiorClarification.............ccoeeeveeevvereerennnn.. 133

4.130racle RAb7 Guide t0 SQL PrOQramMIMINGueuuueereeeueeereneenerenneenseneesesseeeeeeeeeeeeeeseeeereeeeeeeeereerreereeee 134

4.13.11 ocationof HostSourceFile Generatedby the SQL Precompiler.............evevvimeivininnniinnnnnns 134
4.13.2ReMOtEUSEIAUINENTICAIION. ... ettt ettt ettt et ettt et et e et e e e e e e e e e e e e eereenreenrannas 135

4.13.3Additional InformationADOUL DetaCEaPIOCESSESuiiveee ettt e e eenns 135

4.14Guide to Using Oracle SQL/ServicesSClient APIS........coooiiiiiiiiiie i eeeeeeeeeeeeenees 137

4.15Updatesto SYSIEMREIAIONS.uuiiiiiiiiiiiiiiiii ettt ettt et e e et e e e et e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaens 138
4.15.1Clarificationon Updatego the RDBSLAST_ALTEREDColumnfor the
RDBSDATABASE SYStEMREIALION. .. .eviiieeiiiiiiiiiiieeee e e ettt e e e e e e et r e e e e e e s st e e e e e e e s snnnnneeeeeaeens 138
4.15.2MissingDescriptionf RDBBELAGS.........uuuiiiiiieeeeeiiiiiiiiee e e e s ssieeeee e e e e e s asnnerenaaaeeasennnnseees 138

O] = o o] Y =TS ToT= (o [TP PPPPPPPPRRTPN 14
4.16.1Clarificationof the DDLDONOTMIX Error MeSSAge.......cceeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 141

Chapter 5Known Problemsand RESIICHONS.uuuuuuuiieiiiiiiiiiiiieiiiiiieiieeeiees 142

5.1 Known Problemsand RestrictionSin All INTEITACES.ocuuiieiiiiiie i e e e e e e e eans 143
5.1.1RDB-E-ARITH_EXCEPTError Fromthe RAb Optimizer.........ccccoeeummmmiiiiiiiiiiieiiiiiiiiiiniienees 143
5.1.2RMU Failsto PerformOPTIMIZER _STATISTICSActionson SomeDatabases................. 143
5.1.3PossibleRMU Bugcheckor Failureto Notify Triggeringof UserDefinedEvents................. 144

5.1.40ptimizationof CNECKCONSIIAINTSuuuuuietiieiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeseeeeeeeeeeseeneees 144
5.1.5UsingDatabasefrom Release&arlierThanVs. 1., 146
5.1.6PAGETRANSFERVIA MEMORY DiSAbIM........cccevuiiiiiiii et 146
5.1.7CarryoverLocksandNOWAIT TransactiorClarification............ccccccvvvvviiiiiiiiiiiiiieee 147
5.1.8UnexpectedResultsOccurDuring Read-OnlyTransaction®n a Hot StandbyDatabase.....147
5.1.9IMPORT Unableto Import SomeView DefinitioNS............uuueweieeiieeiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeen 147
5.1.10Both ApplicationandOracleRAb USINGSYSSHIBERuoviviiiiii e 148
5.1.11BugcheckbDump Fileswith Exceptionsat COSI_CHFE_SIGNALcovvviiiiiiieiieeeieeeeeeeeeeeee 149
5.1.12Read-onlyTransactiongetchAIP PagesToo Often..........coovvvvvieiiiiiie, 150
5.1.13Row CacheNot Allowed While Hot StandbyReplicationis ACLIVE.............cceevveeveeevieereeenenn.. 150
5.1.14ExcessiveProcesPageFaultsandotherPerformancé&onsideration®uring OracleRdb

I 0] 1 £ 1f

5.1.15Controlof SortWork Memory AlIOCALION.uuuuuueeereeiiieiiieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 151
LT I SNl aT=Y = 10NV Y] md o] o] [TP 152

5.2SOL Known Problemsand RESHICHIONS.uuuuiii e e eeeeeeeiiiie s e e e e e e e ee st s s e e e e e e e e ee ittt s s s e e e e e esesaesnnseeeeeaaenens 154
5.2.1Interchangérile (RBR) Createdoy OracleRdb Release&’.1 Not CompatibleWith Previous
[[z Tt 15
5.2.2UnexpectedO_META_UPDATEError Generatedhy DROPMODULE ... CASCADE
WhenAttachedby PATHNAME. ... e 154
5.2.3ProblemExportingandimporting Sequencewith ANSI-StyleDatabases...........ccccccveee.... 154
5.2.4SystemRelationChangefor InternationaDatabas@JSers..........ccccvvvvvvviiiiiiiiiiieeeeeeee 154
5.2.5SingleStatemenCALL DoesNot SupportTruncatedParametetist or DEFAULT
S 1Yo 1 (o 15
5.2.6SingleStatement OCK TABLE is Not Supportedor SQL Module LanguageandSQL
e (=Y 0] 0 1101] PP 15
5.2.7Restrictionfor CREATE STORAGEMAP Statemenbn Tablewith Data...........ccooceevvevvnneees 156

5.2.8Multistatemenbr StoredProceduredlay CauSEHANGS........ccovvviveiiieiiiieieeeieee e 156

Table of Contents
5.2.9Useof OracleRdbfrom Shareabl@mages.............coooeiiiie e 157

5.30racle RMU Known ProblemsSand REStIICIIONS.uvve ettt et e et e e et e e e e e e e e e e e e e reeereaeeen 159
5.3.1RMU/CONVERT Failsto CorrectlyDefinethe RDB$SWORKLOAD Table.........ccovvevveeneennn. 159
5.3.2RMU ConvertFailsWhenMaximumRelationID iS EXCeeded...........vveneeeiieiiiiieieiieiaeennns 159

5.3.3RMU Unload/After_JournaReqguiresAccurateAlIP Logical Arealnformation..................... 160
5.3.4Do Not UseHYPERSORTwith RMU OptimizeAfter_JournalCommand.................cceeee.... 161
5.3.5Changesn EXCLUDE andINCLUDE Qualifiersfor RMU Backup............cccevveevievvieereeennnn.. 161
5.3.6Defaultfor RMU CRC Qualifier Changindn FutureRelease............ccooeeeiiiiiiciiiiiiiiiiiinnns 162
5.3.7RMU BackupOperationsShouldUseOnly OneTypeof TapeDIriVe.......ccccccccvvvvvvieeiienieennennn. 162
5.3.8RMU/VERIFY ReportsPGSPAMENTOr PGSPMCLSTEITOIS. ..cccceieiivieiieieeeeeeisiinnneeeeaeeans 163

5.4 Known Problemsand Restrictionsin All Interfacesfor ReleaseZ.0and Earlier..........c.ccovvevvenveennne. 164

5.4.1ConvertingSingle—FileDatabases...........cooiiiiei oo 164
5.4.2R0W CaCheSANUEXCIUSIVEACCESS.ucitteietieitiieeeieeetteessta e e st e s et eesb e e s aa e s st e s saaessb e srnaseraaans 164
5.4.3ExclusiveAccessTransactiondMay Deadlockwith RCSPrOCESS.......cccoveeeniniiiiiiiiiiiiiniinns 164
5.4.4 Strict PartitioningMay ScanEXtraPartitionS.uuuuueuueruuiiiiiieiieiieeiereeeeereeeeeeeeeeeeeeeeeeeeeeeee 164
5.4.5RestrictionWhenAdding StorageAreaswith UsersAttachedto Database.................cceee..... 165

5.4.6 Supportfor Single—FileDatabase Be Droppedin a FutureRelease.............c.eeevevveeeeeenneen. 165
5.4.7Multiblock PageWrites May RequireRestoredperation.............ccoeeeeeeeeeieeeeeeeeeeeeeeeeeeeeen 165
5.4.8NetworkLink FailureDoesNot Allow DISCONNECTto CleanUp Transactions................ 166
5.4.9ReplicationOption Copy ProcesseBo Not ProcesPatabasé’agesiheadof an

N 0] o] o= Yo PP 16

5.5SQL Known Problemsand Restrictionsfor Oracle Rdb Release/.0and Earliercccceeeeeeeeeeees 168
5.5.1SQL DoesNot Display StorageViap Definition After Cascadindeleteof StorageArea...... 168
5.5.2ARITH_EXCEPTor IncorrectResultsUsing LIKE IGNORECASEcccccvvvvvvieviiiniieeee, 168
5.5.3Different Methodsof Limiting ReturnedRowsfrom QUEeries...........ccccceeveveeieeiiiieeeee 168
5.5.4Suggestion$or OptimalUseof SHARED DATA DEFINITION Clausefor Parallelindex

(@ (Y= 1110 ¢ 1 17
5.5.5SideEffect WhenCalling StOredROULINES.cooieeeieeii e 171
5.5.6Consideration¥VhenUsingHoldableCUISOIS.......cooiii i 172

Oracle® Rdb for OpenVMS

Release Notes

Release 7.1.0.1

November 2001

Oracle Rdb Release Notes, Release 7.1.0.1 for OpenVMS
Copyright © 1984, 2001 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracl
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Programs
no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf ¢
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial compute
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject tc
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivere
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer
Software — Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for s
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Rdb7, Oracle SQL/Services, Oracle7, Oracle Expert, and
Oracle Rally are trademarks or registered trademarks of Oracle Corporation. Other names may be trademat
of their respective owners.

Contents

Preface

Purpose of This Manual

This manual contains release notes for Oracle Rdb Release 7.1.0.1. The notes describe changed and enha
features; upgrade and compatibility information; new and existing software problems and restrictions; and

software and documentation corrections.

Intended Audience

This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or us
Oracle Rdb Release 7.1.0.1.

Document Structure

This manual consists of five chapters:

Chapter 1|Describes how to install Oracle Rdb Release 7.1.0.1.

Chapter 2|Describes software errors corrected in Oracle Rdb Release 7.1.0.1.

Chapter 3|Describes enhancements introduced in Oracle Rdb Release 7.1.0.1.

Chapter 4|Provides information not currently available in the Oracle Rdb documentation set.
Chapter 5|Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release|7.1.0.1

Chapter 1
Installing Oracle Rdb Release 7.1.0.1

This software update is installed using the standard OpenVMS Install Utility.

NOTE

All Oracle Rdb Release 7.1 kits are full kits. There is no need to install any prior release of
Oracle Rdb when installing new Rdb Release 7.1 kits.

1.1 Requirements

The following conditions must be met in order to install this software:

« Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP71.COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown the Rdb 7.1 monitor on all nodes in the cluster
before proceeding.

« The installation requires approximately 200,000 blocks for OpenVMS Alpha systems.

1.2 Invoking VMSINSTAL

To start the installation procedure, invoke the VMSINSTAL command procedure:
@SYS$UPDATE:VMSINSTAL RDBAMVE1071 device-name OPTIONS N

device—name

Use the name of the device on which the media is mounted.

« If the device is a disk drive, such as a CD—-ROM reader, you also need to specify a directory. For
CD-ROM distribution, the directory name is the same as the variant name. For example:

DKA400:[RDBAMVE1071.KIT]
« If the device is a magnetic tape drive, you need to specify only the device name. For example:
MTAO:
OPTIONS N
This parameter prints the release notes.
The following example shows how to start the installation on device MTAOQ: and print the release notes:

$ @SYS$UPDATE:VMSINSTAL RDBAMVE1071 MTAO: OPTIONS N

1.3 Stopping the Installation

To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedur
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the

copy of Oracle Rdb installed will probably not be usable.

1.4 After Installing Oracle Rdb

This update provides a new Oracle Rdb Oracle TRACE facility definition. Any Oracle TRACE selections that
reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.1-01".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update Kkit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPCS$FACILITY.TLB. To be able to collect Oracle Rdb event-data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

1. Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.1-01 -
$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPCS$FACILITY.TLB

2. Insert the facility definition into the Oracle TRACE administration database.
$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

Note that the process executing the INSERT DEFINITION command must use the version of Oracle Rdb th:
matches the version used to create the Oracle TRACE administration database or the INSERT DEFINITION

command will fail.

1.5 Alpha EV68 Processor Support Added

Fir this release of Rdb, Oracle Rdb Release 7.1.0.1, the Alpha EV68 processor is the newest processor
supported.

1.6 Maximum OpenVMS Version Check Added

As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has been added to the product.
Oracle Rdb has always had a minimum OpenVMS version requirement. With 7.0.1.5 and for all future Oracl
Rdb releases, we have expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve product quality.

OpenVMS Version 7.3 is the maximum supported version of OpenVMS.

As of Oracle Rdb Release 7.1, the Alpha EV68 processor is supported.

The check for the OpenVMS operating system version and supported hardware platforms is performed both
installation time and at runtime. If either a non—certified version of OpenVMS or hardware platform is

detected during installation, the installation will abort. If a non—certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

Chapter 2
Software Errors Fixed in Oracle Rdb Release 7.1.0.1

This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.0.1.

2.1 Software Errors Fixed That Apply to All Interfaces

2.1.1 Excessive Disk I/0O for DROP TABLE and TRUNCATE
TABLE

Bug 989292

In prior releases of Oracle Rdb, the DROP TABLE and TRUNCATE TABLE statements performed excessivi
disk I/0O when the table contained LIST OF BYTE VARYING columns. When this data type is present, these
operations must read the table to locate the LIST data. In prior releases, a DELETE operation was also
performed on the table. While this achieved the delete of the LIST data, it also caused constraints, and
possibly triggers, to be executed along with updating indices as each row was deleted.

This problem was corrected in Oracle Rdb7 Release 7.0.4 and was inadvertently left out of the Release Not
The DROP TABLE and TRUNCATE TABLE statements no longer cause constraints and triggers to be
executed for the table and indices are no longer updated when processing the LIST OF BYTE VARYING
columns. The result is that 1/0 required for DROP TABLE and TRUNCATE TABLE is significantly reduced,
especially for tables stored in UNIFORM format storage areas.

2.1.2 LIST Storage Map Not Updated Upon ALTER or DROP
TABLE

Bug 908343

Database administrators can use CREATE STORAGE MAP to establish special storage area mapping for
LIST OF BYTE VARYING columns. The LIST storage map can be used to place all or some of the columns
of the table in specified storage areas. However, it has been reported that this storage map is not updated w
a DROP TABLE or an ALTER TABLE ... DROP COLUMN is executed.

The LIST data is deleted from the database, however, the name of the table or column is left in the storage
map. This leads to confusion later when RMU/EXTRACT is used to process the storage map. Further, if
columns from the table were the only data stored in that partition, Rdb would not delete the logical area whe
the table was dropped.

These problems have been corrected in Oracle Rdb Release 7.1. Oracle Rdb now implicitly updates the LIS
storage map when you drop a referenced table or column.

2.1.3 ARBs Exhausted

It was possible for a database to run out of AlJ Request Blocks (ARBS) if many processes were abnormally
terminated. If a process had an ARB allocated at the time it was terminated, the Database Recovery Proces
(DBR) would fail to free the ARB allocated to the process. This problem was introduced in Oracle Rdb
Release 7.0.1.2.

Symptoms of this problem include:

* Processes looping. RMU/SHOW STATISTICS would show processes stalling waiting for the AlJ
lock or writing the same AlJ block over and over.

« More AlJ activity due to processes flushing the ARBs more often in attempts to make ARBs
available.

« The "AlJ Journal Information” screen displayed by RMU/SHOW STATISTICS would show the
available ARB count ("ARB.Avail:") to be few or none.

To avoid the problem, avoid terminating processes via the DCL STOP /IDENTIFICATION command. When
the problem occurs, the database must be closed and re—opened on each node where the problem is being
to reset the free ARB lists.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed

When the Asynchronous Batch Write feature is being used, Oracle Rdb is supposed to inspect the tail of the
least recently used (LRU) buffer queue to determine if there are any modified buffers at the end of the queut
The CLEAN BUFFER COUNT parameter specifies how many buffers are to be inspected. If any are found
then those buffers are supposed to be written to disk. However, when unmarking buffers, Oracle Rdb would
unmark buffers at the end of the modified queue instead of the LRU queue. That could cause buffers that we
just modified to be immediately written, even if they were the most recently accessed buffers. This could
cause the buffer to have to be modified again and thus written again.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Instead of writing the buffers at the tail of t
modified queue, Oracle Rdb now writes the modified buffers at the end of the LRU queue.

2.1.5 DETECTED ASYNCHRONOUS PREFETCH THRESHOLD
Not Obeyed

The detected asynchronous prefetch (DAPF) feature is supposed to initiate asynchronous prefetch (APF)
requests if it detects consecutive pages being fetched from a storage area. The THRESHOLD parameter
declares how many consecutive buffers read in a sequence will trigger an APF request. However, Oracle R
would not actually initiate APF requests until the THRESHOLD count plus half the DEPTH number of
buffers were sequentially read.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. DAPF will now be triggered when
THRESHOLD number of consecutive buffers are read in a sequence.

2.1.6 Page Locks Not Demoted at End of Transaction When
FAST COMMIT Enabled

When using the FAST COMMIT feature, at the end of a transaction, page locks were not being demoted. Pe¢
locks are always demoted at the end of a transaction when the FAST COMMIT feature is not enabled. In
some applications, demoting page locks at the end of a transaction can significantly reduce the incidence of
deadlocks involving page locks.

This situation has been improved in Oracle Rdb Release 7.1.0.1. When the FAST COMMIT feature is

enabled, at the end of a transaction, any buffer that does not contain a modified page will have its page lock
demoted.

2.1.7 Bitmapped Scan Causes Bugcheck on Transaction
Termination

Bug 1978724

A problem with the way bitmapped scan uses indexes in the dynamic optimizer to carry out the scan causec
bugchecks on transaction or session termination.

The call stacks of these bugcheck dumps may include the following:

KOD$ROLLBACK + 00000154
%COSI-F-BUGCHECK, internal consistency failure

or

KOD$PREPARE + 00000288

This problem may occur when the dynamic optimizer determines that a query may be satisfied by three or
more indexes, the first priority index chosen being a non-ranked index (that is, either a normal sorted or a
hashed index). At least two of the remaining indexes have to be sorted ranked indexes for the optimizer to
choose to implement the 'bitmapped scan' optimization.

An example of the portion of the strategy dump from a query that will exhibit this behavior follows:
Leaf#01 FFirst CLIENT_DATA Card=5001 Bitmapped scan

BgrNdx1 HASHED_1 [(1:1)2] Fan=1

BgrNdx2 RANKED_3 [1:1] Fan=82

BgrNdx3 RANKED_2 [1:1] Fan=82
BgrNdx4 NON_RANKED _1 [1:1] Fan=82

A possible workaround for this problem is to disable bitmapped scans by either:

set flags 'nobitmapped_scan;
or

$ define RDMS$DISABLE_BITMAPPED_SCAN "1"

Disabling bitmapped scan optimization does not stop bitmapped indexes from being used for data retrieval.

Another possible workaround is to either change the first index chosen by the dynamic optimizer to a rankec
index or to disable that index entirely.

This problem does not cause any data corruption in your database.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.8 Problems With Column Outlines

Two problems have been found with the creation of outlines on COMPUTED BY columns.

1. Bugcheck dumps may be seen when trying to create outlines on COMPUTED BY columns that use
aggregate functions such as MAX or MIN.
For example, attempting to create an outline on the following COMPUTED BY column would
generate a bugcheck dump.

F1 computed by (select MAX(job_end) from JOB_HISTORY)

There is no known workaround for this problem.

2.1f two or more COMPUTED BY columns exist on the same table, and at least one of these columns
has an outline created on it, it is possible that when the optimizer tries to optimize a query using thes
outlines, the query optimization will fail and the query will be aborted with the following error
message:

%RDMS-F-LEVEL_MISMATCH, the table/subquery nesting levels in the query outline
do not match the query

This problem may occur when a query references at least two COMPUTED BY columns from the same tabl
and one of these has an outline stored for it.

Possible workarounds for this problem are to drop the offending outline or to disable outlines by using the
SET FLAGS 'IGNORE_OUTLINES' statement.

These problems have been corrected in Oracle Rdb Release 7.1.0.1.

2.1.9 Count Scan Optimization Incorrectly Returning Count of O

Bug 2020109

A problem in the new COUNT SCAN optimization used with ranked indexes may cause incorrect results to
be returned by COUNT. Depending on the distribution of keys within the ranked index nodes and the searct
criteria provided to the COUNT statement, the COUNT statement may incorrectly return a value of 0.

This problem will only occur when the optimizer uses count scan optimization on a sorted ranked index whe
the search criteria provided in the selection expression for the COUNT statement generates a search key th
does not match an existing key within the index. Depending on key distribution, the scan may, infrequently,

terminate prematurely resulting in an incorrect value of 0 being returned.

A possible workaround for this problem is to disable count scan optimization by using the SET FLAGS
statement or logical name, as in the following example.

SQL> SET FLAGS 'NOCOUNT_SCAN/,
or

$ DEFINE RDMSS$SET_FLAGS 'NOCOUNT_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.10 Disabling AlJ When Row Cache Recovery Required

Bug 1831040

When after—-image journaling is manually disabled on a closed database that had Row Caching active and
requires recovery, it is possible to render the database unusable. For example, consider the following seque
of events:

1. Database is running with Row Caching enabled

2. AlJ files not backed up and eventually fill

3. User processes deleted or system fails

4. User enters RMU /SET AFTER_JOURNAL /DISABLE command

At this point, a warning message is displayed, but the database can not be opened because the DBR proce:
will fail when attempting to access the after image journal files.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Attempts to disable journaling will now res
in a fatal error and journaling will not be disabled when Row Cache recovery is required. The following
example demonstrates this condition.

$ RMU/SET AFTER/DISABLE MF_PERSONNEL.RDB
%RMU-W-DBRABORTED, database recovery process terminated abnormally
%RMU-F-MUSTRECDB, database must be closed or recovered
%RMU-F-FTL_SET, Fatal error for SET operation at 11-SEP-2001 22:52:22.37

2.1.11 Bitmapped Scan Problem With Large Indexes
Bug 2030599

A problem in the new bitmapped scan optimization used with ranked indexes may infrequently cause Rdb tc
return zero records even when matching records exist.

This problem may be found only when either the data records associated with the keys stored in the ranked
indexes span more than 131070 pages or if the data records span over 3 or more areas. In addition, the
existence of this problem depends strongly on the distribution of those records and the selection criteria use
to match records across the indexes.

Bitmap scan optimization may be chosen by the optimizer when two or more ranked indexes are found that
may satisfy all or part of the selection criteria of a query.

Dumping the query strategy using the 'STRATEGY" debug flag will show those queries that have been
optimized this way. At the end of the LEAF information of the strategy dump will be the phrase 'Bitmapped
scan'’, as in the following example.

Leaf#01 FFirst CUSTOMER_DATA Card=5065237 Bitmapped scan
BgrNdx1 ADDR_INDEX [1:1] Fan=82 (index scan#2)
BgrNdx2 NAME_INDEX [1:1] Fan=82 (index scan#3)
BgrNdx3 POSTCODE_INDEX [1:1] Fan=82 (index scan#4)

A possible workaround for this problem is to disable bitmapped scan optimization by using the SET FLAGS
statement or logical name.
For example:

SQL> SET FLAGS 'NOBITMAPPED_SCAN?
or

$ DEFINE RDMS$SET_FLAGS 'NOBITMAPPED_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.12 Query With Range List OR Predicates Returns Wrong
Results

Bug 1329838
The following query with range list OR predicates returns wrong results.

set flags 'strategy,detail’;

select t,m,p,b from a
where (t='S" and (m="N' or p='Q")) or (t="Z2' and (m='N' or b="A"))
order by t,m,p,b;
Tables:
0=A
Sort: 0.T(a), 0.M(a), 0.P(a), 0.B(a)
Conjunct: ((0.T ='S") AND ((0.M ="'N") OR (0.P ='Q"))) OR ((0.T ='Z") AND ((
0.M ='N’) OR (0.B ="'AY))

OR index retrieval | <== Let's call this "Outer"
Conjunct: (0.B ="'A") OR (0.M ='N) OR (0.M ='N")
OR index retrieval | <== |et's call this "Inner"

Get Retrieval by index of relation 0:A
Index name BTY_X [2:2]
Keys: (0.B ='A") AND (0.T ='Z)
Conjunct: NOT (0.B ='A") AND ((0.M ='N") OR (0.M ='N")) ! <==incorrect
Get Retrieval by index of relation 0:A
Index name MTZ_X [(2:2)2]
Keys: r0: (0.M ='N") AND (0.T ='S)
rl: (0.M = 'N') AND (0.T ='Z')
Conjunct: NOT ((0.B ="A") OR (0.M ='N") OR (0.M ="N") ! <== incorrect
Get Retrieval by index of relation 0:A
Index name PZY_X[1:1]

Keys: 0.P ='Q’
T M P B
S M Q B
S M Q NULL
S N P B
S N P NULL
S N Q B
S N Q NULL
S N NULL B
S N NULL NULL
S NULL Q B
S NULL Q NULL

10 rows selected
where the sequential access gives the correct result:
select t,m,p,b from a

where (t='S' and (m='N' or p='Q")) or (t="Z2' and (m='N' or b="A"))
order by t,m,p,b optimize for sequential access;

T M P B

S M Q A <= missing row
S M Q B

S M Q NULL

S N P A <= missing row
S N P B

S N P NULL

S N Q A <= missing row
S N Q B

S N Q NULL

S N NULL A <= missing row
S N NULL B

S N NULL NULL

S NULL Q A <= missing row
S NULL Q B

S NULL Q NULL

15 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main select query contains a where clause with range list OR predicates that involves four
columns, each testing equality with a constant literal value. In this example, we use the column namg
B,M,P,and T.

2.The column T is a common segment between index BTY_X and MTZ_X, where BTY_X is an index
on columns B, T and Y; MTZ_X is an index on columns M, T, and Y. The column P is defined as a
leading segment in PZY_X.

3. The main OR predicate has the left branch which contains an AND between "T='S™ and another
secondary OR predicate "(m='N' or p="Q")". The right branch contains an AND between "T='Z" and
another secondary OR predicate "(m="N' or b="A")".

4. The OR predicates are arranged in such a way that the strategy of the optimizer uses the range list
retrieval "MTZ_X [(2:2)2]" on keys "r0: (0.M ='N") AND (0.T ='S")" and "r1: (0.M ='N') AND (0.T
='Z""in the second leg of the "inner" OR index retrieval under the first leg of the "outer" OR index
retrieval.

5. The NOT filter, created at the top of the second leg of the "inner" OR index retrieval, does not contai
the equality predicate "0.T ='Z" from the first leg.

6. The NOT filter, created at the top of the second leg of the "outer" OR index retrieval, does not contai
the predicates "(0.T ='S")" and "(0.T ='Z")" from the range list predicates of the first leg.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.13 Database Corruption Using Cluster With Galaxy and
Non—-Galaxy Nodes

It was possible for page updates to be lost when the following conditions were true:

» The database had GALAXY SUPPORT IS ENABLED.

» The database had GLOBAL BUFFERS ENABLED.

» The database was being accessed concurrently by both OpenVMS Galaxy and non—-Galaxy nodes.

» The database was often being closed and reopened on one or more of the Galaxy nodes, but never
closed on all of the Galaxy nodes at the same time.

In the above situation, it was possible for updates made by a hon—Galaxy node to be lost if the non—-Galaxy
node closed the database and pages modified by the non—-Galaxy node were also present in the global buffi
pool being shared by the Galaxy nodes, and those pages in the Galaxy global buffer pool were not being us
by any of the Galaxy nodes at the time the database was closed by the non—-Galaxy node.

Any of the following actions can be taken to workaround the problem:

* Disable GALAXY SUPPORT.
* Disable GLOBAL BUFFERS.

« Manually open the database on all Galaxy nodes and keep the database open on all Galaxy nodes L
all users accessing the database from the Galaxy nodes detach from the database.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.14 Performance Problems when
RDM$BIND SNAP_QUIET _POINT Defined to O

Bug 884004

When the logical name RDM$BIND_SNAP_QUIET_POINT was defined to 0, it would cause Oracle Rdb to
write out modified buffers and demote all page buffer locks when a READ ONLY transaction was started.
This would defeat the optimizations utilized by the FAST COMMIT feature and would also cause additional
locking and page buffer 1/O.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. When the
RDM$BIND_SNAP_QUIET_POINT logical is defined to 0 and a process is holding the quiet point lock
when starting a READ ONLY transaction, the quiet point lock will be retained. Thus buffers will not be
flushed and page locks will not be released when starting a READ ONLY transaction. If a backup process
requests the quiet point lock, and the logical RDM$BIND_SNAP_QUIET_POINT is defined to 0, then any
READ ONLY transactions will immediately write out modified buffers and release the quiet point lock.

2.1.15 Workload Ignored When Loaded with RMU/INSERT
OPTIMIZER_STATISTICS

In previous versions of Oracle Rdb, if workload statistics were loaded into a database using the RMU/INSEF
OPTIMIZER_STATISTICS command, the workload would be ignored by the optimizer.

The use of workload statistics can be observed by setting the ESTIMATES debug flag as shown in the
following example.

SQL> set flags 'estimates';
SQL> select * from t1 where f1=1;
Solutions tried 1
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 3.0000000E+00
Cardinality of chosen solution 1.0000000E+00
~0: Workload statistics used
F1 F2
1 1
1 row selected

After loading workload statistics with the RMU/INSERT command, a query that should use statistics will fail
to show the ~O: Workload statistics used message. This indicates that the statistics are being ignored.

The problem can be identified by examining the data loaded into the RDBSWORKLOAD system table. If the
RDB$CREATED and RDB$LAST_ALTERED columns have the same value, as shown in the following
example, then workload statistics will be ignored.

SQL> select rdb$created,rdb$last_altered from rdb$workload;
RDB$CREATED RDB$LAST_ALTERED
19-OCT-2001 00:33:53.27 19-OCT-2001 00:33:53.27
1 row selected

The problem can be corrected by manually updating the RDBSLAST_ALTERED column, as shown in the
following example. New attaches will commence using the workload values.

SQL> update rdb$workload set rdb$last_altered=current_timestamp
cont>where rdb$relation_name="...";

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.16 Descending Sort Not Producing Correct Ordering for
BIGINT and DATE Columns

Bugs 2064232 and 2058531

Oracle Rdb Release 7.1 introduced a new fast sort facility (known as QSORT) which is used when the numt
of rows to be sorted are few and the sort keys are simple.

Unfortunately, QSORT did not correctly handle descending sorts for 64 bit values, such as BIGINT, DATE
(both VMS and ANSI formats), TIME, TIMESTAMP and INTERVAL.

A workaround for this problem is to disable QSORT and revert to the normal sort interface by defining the
following logical name to the value zero (0).

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT 0

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.17 Bitmapped Scan Incorrectly Chosen by Optimizer

A problem in the way the Rdb optimizer determines when to use the new bitmapped scan optimization used
with ranked indexes may infrequently cause Rdb to return wrong results.

The optimizer may sometimes incorrectly choose to carry out bitmapped scans that are not appropriate give
the selection criteria of the query in relation to the columns available to be used within the ranked index
columns. See the following example:

SQL> att 'file personnel’;

SQL> CREATE TABLE bmtest(A INTEGER,B INTEGER,C INTEGER,D INTEGER,E INTEGER);
SQL> INSERT INTO bmtest VALUES(1,1,10,100,1000);

1 row inserted

SQL> INSERT INTO bmtest VALUES(2,1,10,100,1000);

1 row inserted

SQL> SET FLAGS 'STRATEGY";
SQL> SEL * FROM bmtest WHERE B=1;
Conjunct Get Retrieval sequentially of relation BMTEST

A B C D E
1 1 10 100 1000
2 1 10 100 1000

2 rows selected
SQL> SEL * FROM bmtest WHERE B=1 AND D=100;
Conjunct Get Retrieval sequentially of relation BMTEST

A B C D E
1 1 10 100 1000
2 1 10 100 1000

2 rows selected
SQL> SET FLAGS 'NOSTRATEGY";

SQL> CREATE INDEX bmtest_ BCA ON bmtest(B,C,A) TYPE IS SORTED RANKED;
SQL> CREATE INDEX bmtest_DEA ON bmtest(D,E,A) TYPE IS SORTED RANKED;

SQL> SET FLAGS 'STRATEGY";
SQL> SEL * FROM bmtest WHERE B=1,

Leaf#01 FFirst BMTEST Card=0
BgrNdx1 BMTEST_BCA [1:1] Fan=12

A B C D E
1 1 10 100 1000
2 1 10 100 1000

2 rows selected
SQL> SEL * FROM bmtest WHERE B=1 AND D=100;
Leaf#01 FFirst BMTEST Card=0 Bitmapped scan
BgrNdx1 BMTEST_BCA [1:1] Fan=12
BgrNdx2 BMTEST_DEA [1:1] Fan=12
A B C D E
1 1 10 100 1000
1 row selected

The last query shows that bitmapped scan has been used but returns incorrect results. Bitmapped scan sho
not be invoked unless the query provides equality checks for all the columns in the ranked index.

A possible workaround for this problem is to disable bitmapped scan optimization by using the SET FLAGS
statement or logical name. See the following example:

SQL> SET FLAGS 'NOBITMAPPED_SCAN
or

$ DEFINE RDMS$SET_FLAGS 'NOBITMAPPED_SCAN'

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.18 Cannot Connect With Remote Access When Using a
Logical

Bug 451582

If a logical is used to specify the path in a remote attach, an Rdb 7.1 client fails to connect to the remote
database. Depending on the way the database name is specified, either a —-RDB-E-BAD_DB_FORMAT or
—RDB-F-NONODE is returned. This problem is similar to Bug 451582. The following example shows the
problem behavior and the workarounds.

ALPHA4> define Il malibu::disk$users:[remote_account]

ALPHA4> sql

SQL> attach ‘filename Il:v70db';

%SQL-F-ERRATTDEC, Error attaching to database I:my_db
—-RDB-E-BAD_DB_FORMAT, Il:v70db does not reference a database known to Rdb
-RMS-E-FNF, file not found

SQL> attach ‘filename Il:v70db.rdb’;

%SQL-F-ERRATTDEC, Error attaching to database Il:my_db.rdb
-RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-BADDBNAME, can't find database root ALPHA4::DISK$USERS:[REMOTE_ACCOUNT]
-RDMS-F-NONODE, no node name is allowed in the file specification

SQL> attach 'filename malibu::disk$users:[remote_account]my_db.rdb';

SQL>

SQL> exit;

ALPHA4> define Il malibu::disk$users:[remote_account]my_db.rdb
%DCL-I-SUPERSEDE, previous value of LL has been superseded

ALPHA4> sl

SQL> attach ‘filename II';

SQL>

As a workaround, either don't use the logical to specify the path or include the database name in the logical.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.19 Query Joining Derived Tables of Union Legs With Empty
Tables Returns Wrong Results

Bug 1818374

The following query, joining two derived tables containing union legs with empty tables, returns wrong
results of O rows, instead of 1 row.

set flags 'strategy,detail’;

select cl
from (select v1.c1 from

t 02,

(select * from t_01
union all

select * from t_02

vl

inner join

(select * from tt_01
union all

select * from tt_02

)asv2

on (vl.cl =v2.cl and vl.c2 =v2.c2)) as tmp
where tmp.cl = 110759;
Tables:
0=T_02
1=T_01
2=T_02
3=TT 01
4=TT 02
Merge of 1 entries
Merge block entry 1
Cross block of 3 entries
Cross block entry 1
Index only retrieval of relation 0:T_02
Index name T_02_NDX [0:0]
Cross block entry 2
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 1.C1 = 110759
Index only retrieval of relation 1:T_01
Index name T_01_NDX [1:1]
Keys: <mapped field> = 110759
Merge block entry 2
Leaf#01 FFirst 2:T_02 Card=1
Bool: 2.C1 =110759
BgrNdx1 T_02_NDX [1:1] Fan=17
Keys: <mapped field> = 110759
Cross block entry 3
Conjunct: 1.C1 = 110759
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: (<mapped field> = 3.C1) AND (<mapped field> = 3.C2)
Index only retrieval of relation 3:TT_01

Index name TT_01_NDX [2:2]
Keys: (<mapped field> = <mapped field>) AND (<mapped field> =
<mapped field>)
Merge block entry 2
Conjunct: (<mapped field> = 4.C1) AND (<mapped field> = 4.C2)
Index only retrieval of relation 4:TT_02
Index name TT_02_NDX [2:2]
Keys: (<mapped field> = <mapped field>) AND (<mapped field> =
<mapped field>)
0 rows selected

where the tables are defined as :

table t_01 is empty
create table t 01 (C1 INTEGER);
create indext_01_ndx ont 01 (C1);

'table t_02 has 1 row
create table t_02 (C1 INTEGER, C2 TINYINT);
create indext_02_ndx ont_02 (C1);

insertintot_02 values (110759,9);

I'table tt_01 is empty
create table tt_01 (C1 INTEGER, C2 TINYINT);
create index tt_01_ndx ontt_01 (C1, C2);

! table tt_02 has 2 rows
create table tt_ 02 (C1 INTEGER, C2 TINYINT);
create index tt_02_ndx on tt_02 (C1, C2);

insert into tt_02 values (110759,4);
insert into tt_02 values (110759,9);

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query selects the column of a derived table with an equality predicate.

2. The main derived table joins a non—empty table (t_02) and an inner join.

3. The inner join involves a derived table of union between an empty table (t_01) and a non—empty tabl
(t_02), and another derived table of union between an empty table (tt_01) and a non—-empty table

(tt_02).

As a workaround, the query works if the empty tables are loaded with some data as in the following example

insert into t_01 values (110759);

select cl
from (select v1.c1 from
t 02,
(select * from t_01
union all
select * from t_02
)vl
inner join
(select * from tt_01
union all
select * from tt_02
) as v2
on (vl.cl =v2.cl and vl.c2 =v2.c2)) as tmp
where tmp.cl = 110759;
C1
110759

1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.20 Left Outer Join Query With OR Predicate Returns Wrong
Results

Bug 1837522

The following left outer join query with an OR predicate, having an equality predicate of a column and a
constant value on the left side, and an equality predicate of a column and a subquery on the right side, retur
wrong results. It should find 3 rows, but it only finds 2 rows.

set flags 'strategy,detail’;
sel job_code, job_start, cl.employee_id, c2.employee_id
from
job_history as c1
left outer join
employees as c2 on (cl.employee_id = c2.employee_id)
where
cl.job_code = "INTR' or
cl.job_start =
(select max(job_start) from job_history as c3)

Tables:
0 =JOB_HISTORY
1=EMPLOYEES
2 =JOB_HISTORY
Cross block of 2 entries
Cross block entry 1
Aggregate: 0:MAX (2.JOB_START)
Get Retrieval by index of relation 2:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]
Cross block entry 2
Conjunct: 0.JOB_START = <agg0>
Conjunct: 0.JOB_START = <agg0>
Match (Left Outer Join)
Outer loop
Conjunct: (0.JOB_CODE ="JNTR') OR (0.JOB_START = <agg0>
Get Retrieval by index of relation 0:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]
Inner loop (zig-zag)
Index only retrieval of relation 1:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]
C1.J0OB_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID
PRSD 3-Jan-1983 00225 00225
DMGR 3-Jan-1983 00241 00241
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:
1. The main query is a left outer join between 2 tables with an ON clause.
2. The WHERE clause contains an OR predicate, with the left side branch being a simple equality
predicate on a column, and the right branch using a sub—query in the equality predicate.

As a workaround, the query works if the left and right side of the OR predicate is swapped. For example:

sel job_code, job_start, cl.employee_id, c2.employee_id
from

job_history as c1
left outer join
employees as c2
on (cl.employee_id = c2.employee_id)
where
cl.job_start =
(select max(job_start) from job_history as c3)
or
cl.job_code = "INTR'

C1.JO0B_CODE C1.JOB_START C1.EMPLOYEE_ID C2.EMPLOYEE_ID

JNTR 2-Jan-1977 00223 00223
PRSD 3-Jan-1983 00225 00225
DMGR 3-Jan-1983 00241 00241

3 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.21 Query Using Match Strategy With DISTINCT Function
Returns Wrong Results

Bugs 1891938 and 1894192

A query using the match strategy with the Distinct Function returns the wrong results, as in the following
example.

set flags 'strategy,detail’;
select count(*) from
(select distinct
t1.ACCOUNT_ID,
t1.SECURITY_ID
from T1t1,
T2 12
where t1.SECURITY_ID = t2.SECURITY_ID
)ast;
Tables:
0=T1
1=T2
Merge of 1 entries
Merge block entry 1
Reduce: 0.SECURITY_ID, 0.ACCOUNT_ID
Sort: 0.SECURITY_ID(a), 0.ACCOUNT_ID(a)
Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
Match
Outer loop
Sort: 1.SECURITY_ID(a)
Get Retrieval sequentially of relation 1:T2
Inner loop (zig-zag)
Index only retrieval of relation 0:T1
Index name T1_NDX1 [0:0]
ACCOUNT_ID SECURITY_ID
Al DE0005557508
1 row selected

where the tables are defined as :
create table T1 (
ACCOUNT_ID CHAR (2),
SECURITY_ID CHAR (12));
create index T1_NDX on T1 (ACCOUNT_ID, SECURITY_ID);

create table T2 (SECURITY_ID CHAR (12));

with the following contents:
select SECURITY_ID from T2;

SECURITY_ID
DE0005128003
DE0005557508

2 rows selected

select ACCOUNT _ID,SECURITY_ID from T1;
ACCOUNT_ID SECURITY_ID

Al DE0005557508

PP DE0005128003

2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query selects from a derived table.

2. The derived table is the output of a distinct query from T1 and T2 with a join column predicate.

3. The join column of table T1 is the second segment in index T1_NDX which is ordered by the first
segment ACCOUNT_ID.

4. The order of the join column of table T2 is ascending and different from that of T2.

As a workaround, the query works if the query outline is used to apply cross strategy instead of match, as in
the following example.

select * from
(select
distinct
t1.ACCOUNT_ID,
t1.SECURITY_ID
from T1t1,
T21t2
where t1.SECURITY_ID =t2.SECURITY_ID
)ast;
~S: Outline "QO_325EFDCDDEBFFFA8_00000000" used
Tables:
0=T1
1=T2
Merge of 1 entries
Merge block entry 1
Reduce: 0.ACCOUNT_ID, 0.SECURITY_ID
Sort: 0.ACCOUNT_ID(a), 0.SECURITY_ID(a)
Cross block of 2 entries
Cross block entry 1
Get Retrieval sequentially of relation 1:T2
Cross block entry 2
Conjunct: 0.SECURITY_ID = 1.SECURITY_ID
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]
—— Rdb Generated Outline : 31-JUL-2001 11:23
create outline QO_325EFDCDDEBFFFA8_00000000
id '325EFDCDDEBFFFA85200828890C4ES5BA'
mode 0
as (
query (
—— For loop
subquery (
subquery (
T2 1 access path sequential
join by cross to —— <=== change from match to cross
T10 access path index T1 _NDX

)
)
)
)

compliance optional
ACCOUNT_ID SECURITY_ID
Al DE0005557508

PP DE0005128003

2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.22 GROUP BY Query With SUM Aggregate Returns Wrong
Results

Bug 1844260

The following GROUP BY query with SUM aggregate returns wrong results (the 1st row of column
ESTADO should be 'A' instead of 'V").

set flags 'strategy,detail’;
select estado, sum(total_dep) from bug_view group by estado;
Tables:
0=T1
1=T2
Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN 'A' WHEN (((0.ID_PRODUCTO =
15) OR (0.ID_PRODUCTO = 20)) AND (1.FEC_EXPIRACION <= 20001231)) THEN 'V'
ELSE NULL)(a)
Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match
Outer loop (zig—zag)
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]
Innerloop (zig-zag)
Get Retrieval by index of relation 1:T2
Index name T2_NDX [0:0]

ESTADO
Vv 15 <=== ESTADO should be 'A’
\Y 15

2 rows selected
where the view is defined as :

create view bug_view (id_producto, total_dep, estado) as
select
a.id_producto,
case
when a.id_producto = 20 then 20
else 15
end as total_dep,
case
when b.fec_expiracion > 20001231 then ‘A’
when (a.id_producto = 15
OR a.id_producto = 20
) and
b.fec_expiracion <= 20001231
then 'V'
end as estado
from opas_saldos_err a, ope_pasiva_err b
where
a.id_producto = b.id_producto ;

with the following content in the tables:

select * From t1;

ID_PRODUCTO
8

1 row selected

select * From t2;

ID_PRODUCTO FEC_EXPIRACION
8 20000801
8 20010628

2 rows selected

As a workaround, the query works if the predicate "OR a.id_producto = 20" is commented out from the view
as in the following example.

create view bug_view_good (id_producto, total_dep, estado) as
select
a.id_producto,
case
when a.id_producto = 20 then 20
else 15
end as total_dep,
case
when b.fec_expiracion > 20001231 then ‘A’
when (a.id_producto = 15
! OR a.id_producto = 20
) and
b.fec_expiracion <= 20001231
then 'V'
end as estado
fromtla, t2b
where
a.id_producto = b.id_producto ;

select estado, sum(total_dep) from bug_view_good group by estado;
Tables:
0=T1
1=T2
Aggregate: 0:SUM (CASE (WHEN (0.ID_PRODUCTO = 20) THEN 20 ELSE 15))
Sort: CASE (WHEN (1.FEC_EXPIRACION > 20001231) THEN 'A' WHEN ((0.ID_PRODUCTO =
15) AND (1.FEC_EXPIRACION <= 20001231)) THEN 'V' ELSE NULL)(a)
Conjunct: 0.ID_PRODUCTO = 1.ID_PRODUCTO
Match
Outer loop (zig—zag)
Index only retrieval of relation 0:T1
Index name T1_NDX [0:0]
Innerloop (zig-zag)
Get Retrieval by index of relation 1:T2
Index name T2_NDX [0:0]

ESTADO
A 15
\% 15

2 rows selected
The key parts of this query which contributed to the situation leading to the error are these:

1. The main query contains a GROUP BY clause and SUM aggregate function.

2.The SUM aggregate function is defined in the view as a CASE expression.

3. The column in the GROUP BY clause is defined in the view as a CASE expression which contains
the same predicate from the CASE expression of the SUM aggregate.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.23 ROLLBACK Hangs Under DECdtm When Called From an
ACMS CANCEL Procedure

Bug 1905068

Under certain situations, the CANCEL procedure in an ACMS application would cause the ACMS server
process to hang in the RDB dispatch layer. This problem can only occur under the following circumstances:

1. The ACMS application is using 2 phase commit under DECdtm either explicitly (i.e. with a
SYS$START_TRAN call) or implicitly (by attaching to multiple Rdb databases).

2. The CANCEL procedure contains a SYS$ABORT_TRAN call or ROLLBACK statement.

3. The ACMS server process has an outstanding pending request which is blocked (e.g. waiting for row
locked by another user).

If all three of these conditions occurred, the ACMS server process would hang in the CANCEL procedure
even after the condition that caused the original blocking cleared.

The only workaround is to stop the ACMS server process.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.1.24 COMPUTED BY Columns Now Automatically Reserve
Referenced Tables

Bug 1253235

In previous versions of Rdb, it was possible that an application could fail if a reference to a COMPUTED BY
or view column required a table not specified in the RESERVING clause of the SET or DECLARE
TRANSACTION statement.

The application developer may not know that a column requires these extra tables as part of the transaction
the definition of the view or COMPUTED BY column may be changed to reference different tables after the
application is in production.

The following example shows an example where a COMPUTED BY column (PRICE) requires access to a
table (CASE_TABLE) that was not referenced by the RESERVING clause.

SQL> set transaction read only

cont> reserving REPORT_VIEW for shared read,;

SQL> select * from REPORT_VIEW order by LINE_NUM,;
%RDB-E-UNRES_REL, relation CASE_TABLE in specified request is not a
relation reserved in specified transaction

SQL> rollback;

SQL> set transaction read only

cont> reserving REPORT_VIEW, CASE_TABLE for shared read;

SQL> select * from REPORT_VIEW order by LINE_NUM,;

CASE_NUM LINE_NUM PRICE
1 1 7270.00
1 2 14540.00

2 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.1. Rdb now automatically reserves tables

referenced by COMPUTED BY columns for SHARED READ.

2.2 SQL Errors Fixed

2.2.1 Command Line Recall Expanded to 255 Lines

In prior releases of Oracle Rdb, the command line recall was limited to the last 20 lines. This limit has been
lifted to 255 (the maximum supported by OpenVMS) for this release of Rdb.

If more recall is required then SQL provides the EDIT command to edit whole statements. This interface

currently saves the last 20 commands for edit but the SET EDIT KEEP statement can be used to expand thi
number.

2.2.2 New Minimum Value for the INTERVAL Leading Precision

In prior releases of Oracle Rdb, the minimum value for the interval leading precision was restricted to two
digits. This restriction has been removed: an interval leading precision of 1 is now supported.

The following example shows the support for the lower precision value.

SQL> create table TIME_CLOCK
cont> (employee_id char(5),

cont> clock_on timestamp (2),

cont> clock_off timestamp (2),

cont> shift_duration

cont> computed by (clock_off — clock_on) hour (1) to minute);
SQL>

SQL> show table (column) TIME_CLOCK
Information for table TIME_CLOCK

Columns for table TIME_CLOCK:

Column Name Data Type Domain
EMPLOYEE_ID CHAR(5)
CLOCK_ON TIMESTAMP(2)
CLOCK_OFF TIMESTAMP(2)
SHIFT_DURATION INTERVAL

HOUR (1) TO MINUTE
Computed: by (clock_off — clock_on) hour (1) to minute

As in previous releases, if no precision is provided then a default of 2 digits will be used.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.2.3 Incorrect Processing of CASE Expression

Bug 850442

In prior releases of Oracle Rdb, the SQL interface incorrectly processed CASE expressions which included
statistical functions (i.e. COUNT, MAX, MIN, AVG, STDDEV, VARIANCE and SUM).

The following example, which imbeds statistical functions in a CASE expression, caused Rdb to bugcheck:

select
case
when count(employee_id) >=1

then '1'
when count(employee_id) =0
then 2'
else '3'
end
from employees;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file USER2:[TESTIRDSBUGCHK.DMP;
%SQL-I-BUGCHKDMP, generating bugcheck dump file USER2:[TEST]SQLBUGCHK.DMP;
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=0000000000000098, PC=000000000038B948, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

This improved handling of statistical functions also corrects some query strategies. The following example
implements a simple ABS functionality. Due to the erroneous handling of the statistical function, an extra
subselect was present as shown in the optimizer STRATEGY display.

SQL> set flags 'strategy’;
SQL> select
cont> case
cont> when AVG (salary_amount) < 0 then — AVG (salary_amount)
cont> else AVG (salary_amount)
cont> end
cont> from SALARY_HISTORY;
Cross block of 2 entries
Cross block entry 1
Aggregate Get Retrieval sequentially of relation SALARY_HISTORY
Cross block entry 2
Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

2.652896707818930E+004
1 row selected

The corrected SQL query now only requires a single table access.

Aggregate Get Retrieval sequentially of relation SALARY_HISTORY

2.652896707818930E+004
1 row selected

Applications that encounter this type of unexpected optimizer strategy will need to be recompiled, and storel
procedures and functions will need to be recreated.

2.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When
NULL Clause Used

In Oracle Rdb Release 7.1, new syntax was introduced to indicate that a column should allow NULL values.
For instance,

create table MY_TABLE (my_column integer NULL);

This syntax is accepted for compatibility with Oracle RDBMS and on CREATE and ALTER TABLE
prevents the use of the NOT NULL constraint syntax.

When used on ALTER TABLE ... ALTER COLUMN, this clause should also drop any (and all) NOT NULL
constraints defined for the column. This was not performed by Rdb Release 7.1.

The following example shows that the NOT NULL constraint is now dropped by ALTER TABLE.

SQL> create table MY_TABLE (a integer not null);
SQL>

SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
MY_TABLE_A_NOT_NULL
Not Null constraint
Column constraint for MY_TABLE.A
Evaluated on UPDATE, NOT DEFERRABLE
Source:

MY_TABLE.A NOT null

Constraints referencing table MY_TABLE:
No constraints found

SQL>

SQL> alter table MY_TABLE

cont> alter column A NULL;

SQL>

SQL> show table (constraint) MY_TABLE
Information for table MY_TABLE

Table constraints for MY_TABLE:
No constraints found

Constraints referencing table MY_TABLE:
No constraints found

SQL>

This problem has been corrected in Oracle Rdb Release 7.1.0.1. This clause now implicitly drops NOT NUL
constraints for the column.

NOTE: Other constraints that prevent NULL values, such as CHECK and PRIMARY KEY, are not affected
by this statement. The NULL clause is not a constraint and so is not active beyond the CREATE and ALTEF
TABLE statements.

2.2.5 Some Constraint Definitions Not Supported for
AUTOMATIC Columns

In Oracle Rdb Release 7.1, attempts to define UNIQUE, PRIMARY KEY or FOREIGN KEY constraints for
AUTOMATIC columns would result in an error.

In the following example, the programmer desired an automatically generated unique number as a PRIMAR
KEY:

SQL> create sequence s1,
SQL> create table t(a automatic as sl.nextval primary key);
%SQL-F-PKCONSNOTCB, Computed column may not be a primary key

Only NOT NULL and CHECK constraints were allowed for AUTOMATIC columns.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. All types of constraints are now permitted |
AUTOMATIC columns.

2.2.6 %RDB-E-NO_DIST_BATCH_U Error When Executing SET
TRANSACTION

Bug 1921672

If a SET TRANSACTION statement was executed to start a distributed transaction (2 phase commit) and
which specified certain table partitions, an error was inappropriately returned. Specifically, if partition 14 was
named, Rdb would return a %RDB-E-NO_DIST _BATCH_U error and not start the transaction.

For example, suppose an interactive SQL session has two databases attached (this implicitly starts a DECd
distributed transaction), the following SQL would fail as shown.

SQL>SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL READ COMMITTED -
RESERVING DB2.MY_TABLE PARTITION(14) FOR EXCLUSIVE WRITE;
%RDB-E-NO_DIST_BATCH_U, no distributed transaction is allowed with the

recovery mechanism disabled

This query will now execute normally and start a distributed transaction.
There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.2.7 Select With Identical "not in" Clauses

A SQL query which contained two identical "not in" clauses would cause an application to crash, terminate c
bugcheck.

This problem started in Oracle Rdb V7.0.

An example of this type of query follows.

select count(*) from JOBS
where JOB_CODE not in ('A', 'B")
and JOB_CODE not in (‘A', 'BY;

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.2.8 Keyword Matching Now Reported by Interactive SQL

In prior versions of Oracle Rdb, the keyword abbreviation and matching support in interactive SQL would
discard extraneous characters from a token if an expected keyword matched the leading prefix. This was
confusing in some cases. Interactive SQL now generates an informational message to clearly state the
substitution.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

This example shows the informational message generated when extra characters are trimmed from the
keyword.

SQL> create trigger mytrigger

cont> after updatete on mytable2

%SQL-I1-SPELLCORR, identifier UPDATETE replaced with UPDATE
cont> (insert into mytable values (mytable2.a, 'Any’, 'Value"))

cont> for each row;

2.2.9 CREATE MODULE Bugchecks When a Subselect is Used
as a Parameter DEFAULT

In a CREATE MODULE definition, if a subselect was used as a parameter DEFAULT, the create module
bugchecked with the following error message:

%SQL-F-BUGCHK, There has been a fatal error. Please contact your Oracle support
representative. SQL$BLRXPR - 15

An example follows:

SQL> create module DEF_MOD

cont>

cont> procedure DEF1

cont> (in:ainteger

cont> default (select count(*) from rdb$database));
cont> trace :a;

cont>

cont> end module;

%RDMS-I-BUGCHKDMP, generating bugcheck dump file
device:[directory] SQLBUGCHK.DMP;
%SQL-F-BUGCHK, There has been a fatal error. Please contact your Oracle support
representative. SQL$BLRXPR - 15

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The CREATE MODULE definition no longe
bugchecks.

2.2.10 Obsolete Metadata Errors When Using Rdb SQL V7.1 to
Access Oracle Rdb V7.0 Databases

Bug 1994383

When using Oracle Rdb SQL V7.1 to access an Oracle Rdb V7.0 database, obsolete metadata errors were
generated when trying to CREATE a TABLE, a VIEW, and/or a DOMAIN.

Specifically, when CREATIng a TABLE or a VIEW, the following error message would be generated:

CREATE TABLE T (id int);

%RDB-F-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-TABNOTDEF, relation RDBSSEQUENCES is not defined in database
CREATE VIEW V as select * from employees;

%RDB-F-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-TABNOTDEF, relation RDB$SEQUENCES is not defined in database

When trying to CREATE a domain, the following error message would be generated:

create domain dom_test int;
%RDB-F-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-TABNOTDEF, relation RDB$TYPES is not defined in database

These problems have been corrected. SEQUENCES and TYPES are Release 7.1 features and the Rdb SQ
code base has been corrected to insure that queries utilizing these features are only performed against V7.!
databases. Thus, error messages are no longer generated.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.2.11 SQL$PRE and SQL$MOD Performance Improvements
Bug 2032243

The performance of the SQL precompiler and the SQL module language compiler has been improved in
Oracle Rdb Release 7.1.0.1. This improvement is typically seen as a dramatic reduction in CPU consumptic
and elapsed time when using the compilers.

Note as well that the size of the SQL$PRE71.EXE and SQL$MOD71.EXE images has been reduced by
nearly 50%.

2.2.12 Incompatible Character Sets Not Detected by SQL
Interface

In prior versions of Oracle Rdb, the SQL UNION operator would accept incompatible character sets for
merging. This incompatibility was only detected at runtime by the Rdb server.

SQL> select _dec_mcs'aa’ from rdb$database

cont> union

cont> select _kanji'bb’ from rdb$database;

%RDB-E-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibit the requested
assignment

With this release of Rdb, the SQL interface now detects this error and reports an error indicating the
incompatibilities.

SQL> select _dec_mcs'aa’ from rdb$database

cont> union

cont> select _kanji'bb’ from rdb$database;

%SQL-F-INCCSCON, Incompatible character set concatenation between DEC_MCS and
KANJI

In addition, SQL now derives a new target character set for the UNION select values by using a character s

that is compatible with both. For instance, DEC_KANJI includes the full ASCII character set so it will be
chosen as the result character set when ASCIl and DEC_KANJI are merged in a UNION operator.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.2.13 SQLMOD Fails to Set Default Character Set Correctly

A problem within SQLMOD prevented the correct default character set from being set for the module
compilation if a character set other than DEC_MCS was specified as the DEFAULT CHARACTER SET in
the module header.

A check of the listing file will show that the default character set has not been set correctly and, due to this
problem, SQL-F-INCCSASS errors may be raised during the module compilation.

For example, the following module tries to set the default character set to SHIFT_JIS, however, the
compilation of the module results in compilation errors.

$type A.SQLMOD

DECLARE MODULE
DIALECT SQL92
DEFAULT CHARACTER SET SHIFT_JIS
NATIONAL CHARACTER SET SHIFT_JIS
IDENTIFIER CHARACTER SET SHIFT_JIS
LITERAL CHARACTER SET SHIFT_JIS
DISPLAY CHARACTER SET SHIFT_JIS
AUTHORIZATION RDB$DBHANDLE
CHARACTER LENGTH CHARACTERS

INSERT INTO SHIFTJIS_TABLE (SHIFTJIS_COL1)
VALUES
(LAST_NAME);

$ SQLMOD/LIST=A.LIS A.SQLMOD

(SHIFTJIS_COL1)
1
%SQL-F-INCCSASS, (1) Incompatible character set assignment between
SHIFTJIS_COL1 and :LAST_NAME

$ type A.LIS

Command Line Summary:
SJIS_MOD2_M.SQLMOD /LIST

/IG_FLOAT

/WARN=(WARNING, DEPRECATED)
INOFLAG_NONSTANDARD
/CONSTRAINT_DEFAULT=DEFERRED
/INOCONNECT

/INIT_HANDLES
/NORESTRICT_INVOKER
/CHECK_RW

/IANSI_VIEWS

/ANSI_DATE

/ANSI_QUOTING
/ANSI_PARAMETERS
/QUERY_ESTIMATES

Default Character Set: DEC_MCS
National Character Set: SHIFT_JIS
Identifiers Character Set: SHIFT_JIS
Literals Character Set: SHIFT_JIS
Character Length in Characters

Note that the Default Character Set as shown in the listing file has not been set correctly.

A workaround for this problem is to use NAMES ARE in the module header to set the desired character set
prior to setting the Default Character Set.

DECLARE MODULE
DIALECT SQL92
NAMES ARE SHIFT_JIS
DEFAULT CHARACTER SET SHIFT_JIS
NATIONAL CHARACTER SET SHIFT_JIS
IDENTIFIER CHARACTER SET SHIFT_JIS
LITERAL CHARACTER SET SHIFT_JIS
DISPLAY CHARACTER SET SHIFT_JIS
AUTHORIZATION RDB$DBHANDLE
CHARACTER LENGTH CHARACTERS

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.3 Oracle RMU Errors Fixed

2.3.1 RMU Extract Not Formatting View Column Expressions
Correctly

Bug 1832240

In prior releases of Oracle Rdb, the RMU Extract command did not correctly format VIEW definitions that
contained computed expressions in the SELECT clause, such as that shown below.

create view V1 (F3) as
select sum (F3/
case (select cast (F1 as integer) from T1
where F2 = 'STR_VALUE")
when 0 then 1
when 1 then 10
when 2 then 100
when 3 then 1000
when 4 then 10000
when 5 then 100000
else 0
end)
from T2;

This example was extracted below. Note the incorrect formatting of the expression and the missing separati
white space. This made the generated definition illegal.

create view "V1"
(F3) as
select

sum((C2.F3 / case (select CAST(C3.F1 AS INTEGER) from T1 C3where (C3.F2 =
'STR_VALUE")) when 0 then 1 when 1 then 10 when 2 then 100 when 3 then 1000
when 4 then 10000 when 5 then 100000 else Oend)) from T2 C2;

The only workaround for this problem is to manually edit the definition after extracting with RMU Extract or
to revert to the original view source.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.3.2 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records
Clarification

The RMU /UNLOAD /AFTER_JOURNAL Utility uses additional CPU and memory resources while
processing and unloading fragmented records from the after—image journal file. As record fragments are
found within a transaction, they are buffered in memory on a "fragment" queue. After all non—-fragmented
records from the transaction have been output, the fragmented records are reconstructed and output.

Because the fragments are buffered in memory, additional process page file quota may be required when
unloading transactions that have a large number of record fragments. Also additional process working set
qguota may be required in order to limit process page faulting.

2.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS
Privilege

Bug 1966820

The RMU/DUMP/BACKUP command for Oracle Rdb RMU did not check if the user process was granted the
VMS BYPASS privilege if the user was not granted the necessary RMU access privileges to the database
backup file created by the RMU/BACKUP command. Therefore, the RMU/DUMP/BACKUP command did
not execute even though the BYPASS privilege should have allowed the user to execute the command.

The following example shows that even though the BYPASS privilege should have allowed the user to
override the lack of RMU privileges to access the backup file, the user was denied access by the
RMU/DUMP/BACKUP command.

$RMU/DUMP/BACKUP PERSONNEL

%RMU-I-DMPTXT_163, No dump option selected. Performing read check.
%RMU-F-NOPRIVERR, no privileges for attempted operation
%RMU-F-FTL_DUMP, Fatal error for DUMP operation at 30—~AUG-2001 16:42:17.96

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.3.4 RMU/BACKUP Invalid Volume 1 Tape Label When Used
With COMPAQ SLS

Bug 1969648

The RMU/BACKUP command for Oracle Rdb RMU, when used with COMPAQ SLS, did not detect the case
where SLS did not provide a new VOL1 label to replace the VOL1 label that Rdb RMU/BACKUP was about
to write to the first tape volume. RMU/BACKUP therefore wrote an 80 character label buffer to the tape that
contained invalid characters. This caused an RMU-F-LABELERR when the tape was restored using
RMU/RESTORE.

This problem only happens when RMU/BACKUP is run with COMPAQ SLS and when COMPAQ SLS does
not modify the 80 character VOL1 label that RMU/BACKUP writes to the first tape volume.

The following example shows that although the RMU/BACKUP with SLS did not show an error, a VMS
DUMP command of the BACKUP tape shows an invalid label on the first backup tape volume. Therefore,
RMU/RESTORE returns an RMU-F-LABELERR.

Here is an example of a valid RMU/BACKUP tape label on the first tape volume created after this problem
was fixed (note that this is just an example and correct labels may vary).

$ dump tapedevice:

Dump of device tapedevice: on 29-AUG-2001 11:44:32.94

Block number 1 (00000001), 80 (0050) bytes

20202020 20202020 20202020 20202020 20202020 20203035 30494241 314C4F56
VOL1ABIO50 000000

20202020 20202020 20202020 20202020 20202020 20202020 20202020 20202020

000020

33202020 20202020 20202020 202020203................ 000040

Here is an example of an invalid RMU/BACKUP tape label on the first tape volume that has been created by
this problem (note that this is just an example and incorrect labels may vary).

$ dump tapedevice:

Dump of device tapedevice: on 29-AUG-2001 ...

Block number 1 (00000001), 80 (0050) bytes

00000000 00001FO00 00000000 00183390 FFFFFFFF FFFFFFFE 00000000 000119D8
Do B 000000

00000000 00000000 00000000 007EBFCO 00000000 00183390 00000000 00010DCO
A.... 3o Ag~ i, 000020

00000000 00000000 00000000 O0000DO5

................................ 000040
Here is an example of the RMU-F-LABELERR returned by RMU/RESTORE.

%RMU-F-LABELERR, error in tape label processing on
tapedevice:[000000]SAMPLE_DB.RBF;

-RMU-F-NOTANSI, tape is not valid ANSI format
%RMU-F-FATALERR, fatal error on RESTORE
%RMU-F-FTL_RSTR, Fatal error for RESTORE operation ...

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With
Local Temporary Tables

Bug 2019322

RMU/Analyze/Cardinality, when attempting to process LOCAL temporary tables, generated an error and
failed to execute.

$ rmu/anal/card sgl$database

%RDMS-E-BAD_CODE, corruption in the query string

%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

%RMU-F-FTL_ANA, Fatal error for ANALYZE operation at 27-SEP-2001 13:34:25.79

RMU has now been corrected to ignore temporary tables as well as views.
The workaround for this problem is to use the RMU/SHOW OPTIMIZER/STATISTIC=CARD command or
the RMU/COLLECT OPTIMIZER_STATISTICS command if RMU/ANALYZE/CARDINALITY/UPDATE

was tried.

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.3.6 File Name Not Displayed By RMU /RESTORE for Extend
Failure

Bug 1822217

When an RMU /RESTORE operation is unable to extend a storage area, it is possible for the error message
displayed to not include the name of the file. This may make it difficult to determine which device has
inadequate free space. In the following example note that the name of the file is not displayed.

$ RMU /RESTORE ...

%RMU-F-FILACCERR, error extending file

-SYSTEM-W-DEVICEFULL, device full; allocation failure

%RMU-F-FTL_RSTR, Fatal error for RESTORE operation at 17-JUN-2001 03:08:55

This problem has been corrected in Oracle Rdb Release 7.1.0.1. RMU /RESTORE now displays the file nar
where possible, during a failed file extend operation.

2.3.7 RMU/SHOW STATISTICS Allowed Suspend of Disabled
ABS

Previously, the RMU /SHOW STATISTICS Utility allowed the user to suspend AlJ Backup Server (ABS)
operations on a node even when the ABS was disabled. This could lead to confusing errors during later
manual AlJ backup operations.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /SHOW STATISTICS Utility now
does not allow the ABS to be suspended when it is not enabled.

2.3.8 RMU/COPY/BLOCKS_PER_PAGE Can Corrupt Copied
Database Uniform Areas

Bug 2028181

For the RMU/COPY command, if the "/blocks_per_page" qualifier was not specified for a particular storage
area but was for all database storage areas, database corruption of uniform storage areas occurred to the
copied database. As documented in the Oracle Rdb RMU Reference Manual for the RMU/COPY command,
BLOCKS PER PAGE can only be changed for MIXED storage areas, not UNIFORM storage areas. But whe
the "/blocks_per_page" qualifier was used for all storage areas, RMU incorrectly bypassed the check for
UNIFORM storage areas and attempted to change the BLOCKS PER PAGE setting for UNIFORM as well a
MIXED storage areas. This caused the database corruption of the moved copy of the database. Now, the
number of BLOCKS PER PAGE will be changed only for MIXED storage areas and a warning message will
be output for each UNIFORM storage area that BLOCKS PER PAGE cannot be changed for that area since
is a UNIFORM database storage area.

The following example shows that since /BLOCKS_PER_PAGE=3 was specified for all storage areas in the
MF_PERSONNEL database, it caused the database corruption problem for the uniform storage areas in the
copied database.

$ RMU/COPY/DIR=TMPDIR/ROOT=TMPDIR:MFP1 /NOLOG /BLOCKS_PER_PAGE=3 MF_PERSONNEL
%RMU-W-BADPTLARE, invalid larea for uniform data page 5 in storage area 1

%RMU-W-BADPTLAR2, SPAM larea_dbid: 16385, page larea_dbid: 1
%RMU-W-BADPTLARE, invalid larea for uniform data page 149 in storage area 1

$ RMU/VERIFY/ALL TMPDIR:MFP1

%RMU-I-BGNROOVER, beginning root verification

%RMU-I-ENDROOVER, completed root verification

%RDB-W-NO_RECORD, access by dbkey failed because dbkey is no longer associated
with a record

-RDMS-F-NODBK, 61:1179:0 does not point to a data record

%RMU-E-ERRRDBREL, error accessing RDBSRELATIONS relation

The following example shows that the problem is now fixed.

$ RMU/COPY/DIR=TMPDIR/ROOT=TMPDIR:MFP1 /NOLOG /BLOCKS_PER_PAGE=3 MF_PERSONNEL
%RMU-W-UNIFORMBLOCKS, BLOCKS PER PAGE cannot be changed for uniform storage

area RDB$SYSTEM

%RMU-W-UNIFORMBLOCKS, BLOCKS PER PAGE cannot be changed for uniform storage

area MF_PERS_SEGSTR

$ RMU/VER/ALL TMPDIR:MFP1

To avoid this problem, specify /BLOCKS_PER_PAGE for each individual storage area in the RMU/COPY
command, not as a default for all storage areas.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. A warning message is displayed and the
uniform storage area page size is not changed.

2.3.9 DROPped Storage Area and RMU /VERIFY in Cluster
Bug 1421362

Previously, when a database was opened in a cluster environment, it was possible for the RMU /VERIFY
command to be unable to open storage area files when storage areas were moved or dropped on another n
in the cluster.

For example, consider the following sequence of events on a two node cluster (consisting of NODE1 and
NODEZ2):

Nodel$: RMU /OPEN MFP
Node2$: RMU /OPEN MFP
Nodel$: SQL$ ALTER DATABASE FILENAME MFP DROP STORAGE AREA U1,

Node2$: RMU /VERIFY MFP

%RMU-F-OPNFILERR, error opening file UL.RDA
%RMU-F-FILNOTFND, file not found

%RMU-E-BDAREAOPN, unable to open file UL.RDA for storage area
%RMU-F-ABORTVER, fatal error encountered; aborting verification

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /VERIFY Utility now correctly
detects storage areas that have been dropped or moved.

2.3.10 RMU /VERIFY Checks All Storage Area Files First
Bug 671681

Previously, the RMU /VERIFY command would abort and return a fatal error to the user when a storage are
file was unable to be opened (for example, when the storage area file had been deleted). However, other

storage areas were not checked, leading to the possibility that not all problems with missing storage area file
were reported.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /VERIFY Utility now checks all
storage area files and reports problems while opening the files before returning a fatal error. This makes it
much easier to know what files must be restored with the RMU /RESTORE command.

2.3.11 RMU/SHOW STATISTICS Multi-Page Report File

Previously, the RMU /SHOW STATISTICS Utility only displayed the first page ("Page: 1 of 1") of
multi-page displays. This made it difficult, at times, to find specific information.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The RMU /SHOW STATISTICS Utility now
writes all pages of multi—-page displays to the report file. Note that for some screens (storage area informatic
row cache information, and so on), there can be a significant amount of data written and this can result in a
dramatic increase in the size of the report file.

2.3.12 Area Locks Demoted Statistic Not Always Correctly
Incremented

Previously, the "locks demoted" statistic for "area" locks was not always correctly incremented. This could
occur, for example, when a read-only transaction was started when the previous transaction was a read—-wi
transaction. The "locks promoted"” statistic could have been incorrectly incremented in this case. This, in turt
lead to potentially confusing results when comparing the "locks promoted" rate with the "locks demoted" rate
for "area” locks in the "RMU/SHOW STATISTICS" facility.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. The correct statistic is now incremented w
an "area" lock is demoted from one lock mode to a lower mode.

2.3.13 RMU /BACKUP /ONLINE /NOQUIET_POINT Fails

Oracle Rdb Release 7.1.0 introduced a potential regression where the RMU /BACKUP /ONLINE
/INOQUIET_POINT command may fail with an incorrect error message indicating that it is unable to write to
the root file. This is an example of the incorrect error from the RMU /BACKUP command:

$ RMU /BACKUP /ONLINE /NOQUIET_POINT MFP NLAO:MFP
%RMU-F-FILACCERR, error writing file DUAO:[DB]JMFP.RDB;1
%RMU-F-FTL_BCK, Fatal error for BACKUP operation ...

This problem has been corrected in Oracle Rdb Release 7.1.0.1.

2.4 LogMiner Errors Fixed

2.4.1 LogMiner Compresses Pre—Delete Record Content

Previously, when the Oracle Rdb LogMiner(TM) feature was enabled, the pre—delete record contents were I
compressed prior to being journaled. Because of this, it was possible for AlJ files to grow excessively if man
large records were being deleted.

This problem has been corrected in Oracle Rdb Release 7.1.0.1. When the Oracle Rdb LogMiner feature is
enabled, pre—delete record contents are now correctly compressed. Because of the difference in pre—delete
record contents in an AlJ file, it is important that AlJ files created with prior versions of Oracle Rdb be
processed with the matching version of the Oracle Rdb LogMiner (RMU /JUNLOAD /AFTER_JOURNAL
command).

When using the Oracle Rdb LogMiner feature, existing AlJ files should be backed up and processed prior to
upgrading to this release of Oracle Rdb.

Failure to use the correct version of the Oracle Rdb LogMiner to process an AlJ file typically results in
RMU-W-RECVERDIF warnings when pre—delete record contents are being processed.

LogMiner AlJ files not compatible

When the Oracle Rdb LogMiner(TM) feature is being used, AlJ files from this version of
Oracle Rdb are not compatible with the Oracle Rdb LogMiner feature from prior versions
of Oracle Rdb. Only the Oracle Rdb LogMiner feature is affected; AlJ recovery is not
affected. If the Oracle Rdb LogMiner feature is not enabled for a database, there is no
difference in the format or content of an AlJ file.

2.5 Optimizer Problems Fixed in Oracle Rdb Release
7.1.0.

The following Optimizer Bugs were fixed in Oracle Rdb Release 7.1.0 but the release notes were
inadvertently left out.

2.5.1 Query Having OR Compound Predicates With Subquery
Returns Wrong Results

Bug 1527102

The following query contains the OR of three predicates: one of which is based on the results of a subquery

one of which is a filter predicate of the form column = literal; and one of which is a constant of the form
literal = literal. The query should return 1 row.

set flags 'strategy,detail’;
select t1.hmenr from t1 t1
where t1.ean='5410103914978" and
(t1.shop_class = (select sho.shop_class from r_shop sho
where sho.shop='460")
or t1.shop_class="'A'
or 'XXX'='460'");
Tables:
0=t1
1=R_SHOP
Cross block of 2 entries
Cross block entry 1
Aggregate: (VIA)
Conjunct: 1.SHOP = "460'
Conjunct: 'XXX' = '460'
Get Retrieval sequentially of relation 1:R_SHOP
Cross block entry 2
Conjunct: (0.ean ='5410103914978") AND ((0.shop_class = {subselect}) OR
(0.shop_class ='A") OR ('XXX' = '460")
Get Retrieval sequentially of relation 0:t1
HMCNR
45281
45134
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:
1. Afilter predicate is ANDed to an OR compound predicate
2. The OR compound predicate contains a subquery predicate, a couple of filter predicates and a
constant predicate

As a workaround, the query works if the constant predicate is removed.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.2 Query Using OR/AND Predicates With EXISTS Clause
Returns Wrong Results

Bug 1569972

The following query using AND/OR predicates with an EXISTS clause should return 1 row:

set flags 'strategy,detail’;

select tl.c1 from t1 t1, t2 t2 where
((t2.c4=1and
t2.c5 =5 and
not exists (select * from t2 t2a <———-
where t2a.c4 = 4 and t2a.c5 =5)) or <———=
(t2.c4 =4 and t2.c5 =5)) <———
and tl.c1 =t2.c6 <———

Tables:
0=T1
1=T2
2=T2
Cross block of 3 entries
Cross block entry 1
Conjunct: {subselect} = 0
Aggregate—-F1: (COUNT-ANY) Index only retrieval of relation 2:T2
Index name T2_H [2:2]
Key: (2.C4 = 4) AND (2.C5=5)
Cross block entry 2
Conjunct: (1.C4=1)OR (1.C4=4)
Conjunct: 1.C5=5
Conjunct: {subselect} =0
Get Retrieval by index of relation 1:T2
Index name T2_H [(2:2)2] Bool
Key: ((1.C4 =1) AND (1.C5 =5)) OR ((1.C4 = 4) AND (1.C5 =5))
Bool: 1.C5=5
Cross block entry 3
Index only retrieval of relation 0:T1
Index name T1_H [1:1]
Key: 0.C1=1.C6
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. OR parent predicate with AND predicates on each branch
2.0ne of the OR branches also includes a subquery, such as NOT EXISTS
3. A second AND predicate is appended after the OR parent predicate

As a workaround, the problem can be corrected if you move the second AND predicate to the front of the Ol
parent predicate, as follows:

set flags 'strategy,detail’;

select t1.c1 from t1 t1, t2 t2 where

tl.cl =t2.c6 and <———=
((t2.c4=1and
t2.c5=5and
not exists (select * from t2 t2a <———=
where t2a.c4 = 4 and t2a.c5 =5)) or <———
(t2.c4 =4 and t2.c5 = 5)) <———

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.3 Query Using German Collating Sequence Returns Wrong
Results

Bug 1530947

The following query, in a database where the German Collating Sequence is used by default, returns wrong
results (should return some rows):

SELECT p.datum, p.produkt, p.abtlg, p.stelle
FROM v_team_datum p,
produkte g
where
p.abtlg=g.abtlg ;
Conjunct
Match
Outer loop
Sort Conjunct Aggregate Sort Conjunct
Leaf#01 BgrOnly PROD_DATEN Card=24063
BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8
Inner loop (zig-zag)
Conjunct Get Retrieval by index of relation PRODUKTE
Index name IDX_PRODUKTE_SORT [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The query is a simple join between a view and one table, with the join predicate of CHAR data type
2. The optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into the German collating sequence

As a workaround, the query works if a view with the same attributes as the table is used instead of the table
itself, as in the following example:

SELECT p.datum, p.produkt, p.abtlg, p.stelle
FROM v_team_datum p,
view_produkte g
where
p.abtlg=g.abtlg ;
Cross block of 2 entries
Cross block entry 1
Conjunct Aggregate Sort Conjunct
Leaf#01 BgrOnly PROD_DATEN Card=24063
BgrNdx1 IDX_PROD_DATEN_SORT [1:1] Fan=8
Cross block entry 2
Leaf#02 FFirst PRODUKTE Card=25
BgrNdx1 IDX_PRODUKTE_SORT [3:3] Fan=6

The query works because the optimizer applies a cross strategy instead of a match strategy.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.4 Left Outer Join Query Returns Wrong Results When ON
Clause Evaluates to False

Bug 1581632

The following left outer join query returns wrong results when the join conditions in the ON clause evaluate t
false for all rows:

set flags 'strategy,detail’;
select tt.employee_id, tt.last_name, jh.job_code
from
(select e.employee_id, e.last_name
from degrees d, employees e where
e.employee_id ='00354'
and d.employee_id = e.employee_id) as tt
left outer join

job_history jh
on tt.last_ name ='?' and <———=
jh.job_code = tt.employee_id; <———=
Tables:
0 = DEGREES

1=EMPLOYEES
2 =JOB_HISTORY
Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Conjunct: "tt.last_name" ="'?'
Merge of 1 entries
Merge block entry 1
Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 1:EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup
Key: 1.EMPLOYEE_ID ='00354"
Cross block entry 2
Index only retrieval of relation 0:DEGREES
Index name DEG_EMP_ID [1:1]
Key: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
Cross block entry 2
Conjunct: ("tt.last_name" = '?") AND
(2.JOB_CODE = tt.employee_id)
Get Retrieval by index of relation 2:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:
1. Left outer join query on a subquery and job_history of mf_personnel database

2. ON clause containing two or more predicates, and the ON clause evaluates to false for all rows, for
example:

"last_name" ='?" and jh.job_code = tt.employee_id
There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.5 Query With Two IN Clauses on Two Subqueries Returns
Wrong Results

Bug 1585429

The following query with two IN clauses on two subqueries with different match keys, returns a count of O
when it should return a non-0 count:

SELECT count(*) FROM t1

WHERE
subclass_id IN (SELECT DISTINCT subclass_id
FROM t2
WHERE class_id = 'CAJ_CO01#")
AND
recipe_id IN (SELECT recipe_id

FROM t3
WHERE egp_id = 'CAR-02C'

)

Aggregate Conjunct
Match
Outer loop
Conjunct
Match
Outer loop
Get Retrieval by index of relation t1
Index name t1_ndx [0:0]
Innerloop (zig-zag)
Aggregate-F1 Conjunct
Index only retrieval of relation t2
Index name t2_ndx [0:0]
Inner loop (zig—zag)
Aggregate-F1 Conjunct Get
Retrieval by index of relation t3
Index name t3_ndx [1:1]

0
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:
1. Two different IN clauses on two subqueries, with different match keys
2.The query applies a match strategy where the outer leg uses the match key (subclass_id) of another
match stream that is different from the other key (recipe_id) of the inner leg without sorting the
results of the outer leg using the match key (subclass_id).
Oracle Rdb7 Release 7.0.5 applies a sort node on the outer leg and thus returns the correct results.
As a workaround, use a query outline to change the strategy to cross from match.
This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.6 Query Having Same SUBSTRINGs Within CASE Expression
Returns Wrong Results

Bugs 1489972, 1485656, 975091

The following queries, containing the same SUBSTRING expressions within a CASE expression, return
wrong results.

The following example shows two simple queries (from Bug 1485656 and Bug 975091) having the same
subexpression (SUBSTRING) appearing more than once within the CASE expression. The query in the cas
of Bug 1489972 is more complicated and thus omitted here. It contains unions of several subselect queries
with nested views and SUBSTRING/CASE expressions.

1 Bug 1485656
! should return the value 1 for the content of y
I ~Xt: Contentofy =1
|
set FLAGS 'TRACE'
declare :x char(2);
declare :y char(1);
begin
set :x="21";
set :y= case
when ((substring(:x from 1 for 1)="1") and
(substring(:x from 2 for 1)="1"))

then 'O’
else
(substring(:x from 2 for 1))
end;
trace 'Contentofy ="', 1y ;

end;
The output is:
~Xt: Content of y =

1 Bug 975091

I should return the value of 295 for the column RESP
!

create table t1 (c1 char(12));

insert into t1 value ('29500000199";

select substring(c1 from 1 for 3) ress,
case
when 'a' ='c' and (substring(cl from 1 for 3)) = '295'
then 'a’
when 'c' = 'c¢'
then (substring(cl from 1 for 3))
else "'
end resp
from t1;
RESS RESP
295
1 row selected

The key parts of these queries which contributed to the situation leading to the errors are these:

1. CASE expression contains several similar expressions

2. The expression in the WHEN clause is shared in the same clause of another WHEN clause (in the
case of Bug 975091)

3. The expression in the WHEN clause is shared in another part of the CASE statement, such as an
ELSE clause (in the case of Bug 1485656)

In the case of Bug 1485656, a workaround is to use an IF instead of a CASE statement to get the correct
results:

set FLAGS 'TRACE'
declare :x char(2);
declare :y char(1);
begin
set :x="21";
if ((substring(:x from 1 for 1)='1") and
(substring(:x from 2 for 1)="1"))
then
set :.y="0";
else
set :y=(substring(:x from 2 for 1));
end if;

trace 'Content of y:',:y;
end;

Another workaround is to use temporary variables for the substrings.

In the case of Bug 975091, the workaround is to swap the WHEN clauses, as in the following example:

select substring(c1 from 1 for 3) ress,
case
when'c'= 'c’
then (substring(cl from 1 for 3)) I <=1st
when 'a’ = ‘¢’ and (substring(cl from 1 for 3)) = '295' | <= 2nd
then 'a’
else '’
end resp
from t1;

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.7 Aggregate Query With Nested MIN Function Returns
Wrong Results

Bug 1408892

The following query should return the value of ADMN for min(d1.department_code):

create index dept_managerid_code_ndx on departments
(manager_id,department_code);

select min(d1.department_code),
min((select min (d2.department_code)
from departments d2
where d1.manager_id = d2.manager_id AND
d2.budget_actual > 0))
from departments di;
NULL NULL
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The subselect query has "where" predicates which cause the query to return 0 rows, e.g.
"d2.budget_actual > 0"

2. The subselect query contains an aggregate function, e.g. MIN

3. The subselect query is wrapped inside another aggregate function, e.g. MIN

As a workaround to this problem, the query works if the MIN function is removed from the column
'd2.department_code' in the inner subselect, as seen in the following example.

select min(d1.department_code),
min((select d2.department_code
from departments d2
where d1.manager_id = d2.manager_id AND
d2.budget_actual > 0))
from departments d1;

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.8 Query with UNION Subselect Returns Wrong Results

Bug 1656974
The following query with UNION subselect should return O rows.

set flags 'strategy,detail’;
select ps.id, ps.kbn, ps.ymd
from (select psl.id,
psl.kbn,
'99999999 I <== this causes the problem
from ps psi, pm pm
where pm.id = psl.id
union all
select ps2.id,
ps2.kbn,
ps2.end_ymd
from ps ps2, pm pm
where pm.id = ps2.id)

as ps (id, kbn, ymd)
where ps.id ='021023307' and
ps.ymd >'12345678' and
ps.kbnin ('1','2") ;
Tables:
0=PS
1=PM
2=PS
3=PM
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Conjunct: 1.id = 0.ID
Match
Outer loop (zig-zag)
Conjunct: 0.ID ='021023307"
Conjunct: '99999999' > '12345678'
Get Retrieval by index of relation 0:PS
Index name IDX_PS_2 [1:1] Bool
Key: <mapped field> ='021023307"
Bool: '99999999' > '12345678'
Inner loop (zig-zag)
Index only retrieval of relation 1:PM
Index name IDX_PM_0 [0:0]
Merge block entry 2
Conjunct: 3.id = 2.ID
Match
Outer loop (zig-zag)
Conjunct: (2.1D ='021023307") AND (2.end_ymd > '12345678")
AND ((2.kbn ='1") OR (2.kbn ='27)
Get Retrieval by index of relation 2:PS
Index name IDX_PS_2 [2:1]
Key: (<mapped field> ='021023307") AND (<mapped field> > 12345678
)
Innerloop (zig-zag)
Index only retrieval of relation 3:PM
Index name IDX_PM_0 [0:0]
ID KBN YMD
021023307 0 99999999
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The query contains a subselect of a UNION, where one of the columns is a literal, e.g. '99999999'.
2. The where clause contains an equality predicate, a GTR predicate, and an IN clause.

As a workaround, the query works if the IN clause is moved before the GTR predicate, as in the following
example.

set flags 'strategy,detail’;
! The following query should return O rows
|
select ps.ID, ps.kbn, ps.ymd
from (select ps1.1D,
psi.kbn,
‘99999999
from ps psi, pm pm
where pm.id = ps1.ID
union all
select ps2.id,
ps2.kbn,
ps2.end_ymd
from ps ps2, pm pm
where pm.id = ps2.id)

as ps (id, kbn, ymd)
where ps.id ='021023307' and

ps.kbn in ('1','’2") and <=== moved
ps.ymd >'12345678';

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.9 Query with CONCATENATE in BETWEEN Clause Returns
Wrong Results

Bug 1663038

The following query uses the CONCATENATE function in the BETWEEN clause. It should return 3 rows,
but it returns only 1 row.

SQL> sh tab ORDER;
Information for table ORDER

Columns for table ORDER:

Column Name Data Type Domain
ORDER_NO CHAR(4)

Not Null constraint ORDER_NO_NOT_NULL
SHIP_DATE CHAR(8)

Not Null constraint ORDER_NOT_NULL
SHIP_STAT CHAR(1)

Not Null constraint ORDER_NOT_NULL
...etc...

Table constraints for ORDER:
ORDER_NOT_NULL
Not Null constraint
Column constraint for ORDER.SHIP_DATE
Evaluated on COMMIT
Source:
ORDER.SHIP_DATE NOT null
...etc...

SQL> sel order_no from customer;
ORDER_NO

1EDO

1j80

1a78

3 rows selected

SQL> sel order_no,ship_date,ship_stat from order;
ORDER_NO SHIP_DATE SHIP_STAT
1EDO 20010301 b

1a78 20010228 a

1j80 20010301 a

3 rows selected

set flags 'strategy,detail’;
set flags 'max_stab’;
select a.order_no, a.ship_date, a.ship_stat
from ORDER a, CUSTOMER b
where a.order_no = b.order_no and
((a.SHIP_DATE || a.SHIP_STAT)
BETWEEN '20010228a' '20010301d") ;
Tables:
0 = ORDER
1 =CUSTOMER
Cross block of 2 entries
Cross block entry 1

Conjunct:

(0.SHIP_DATE > SUBSTRING ('20010228a' FROM 0 FOR 8)) OR
((0.SHIP_DATE = SUBSTRING ('20010228a' FROM 0 FOR 8)) AND
(0.SHIP_STAT >= SUBSTRING ('20010228a' FROM 8)))

Conjunct:

((0.SHIP_DATE < SUBSTRING ('20010301d' FROM 0 FOR 8)) AND
NOT MISSING (0.SHIP_STAT)) OR
((0.SHIP_DATE = SUBSTRING ('20010301d' FROM 0 FOR 8)) AND
(0.SHIP_STAT <= SUBSTRING ('20010301d' FROM 8)))

Get Retrieval by index of relation 0:ORDER
Index name ORDER_UMO1 [0:0]

Cross block entry 2
Index only retrieval of relation 1:CUSTOMER
Index name CUSTOMER_UMO1 [1:1] Direct lookup
Key: 0.ORDER_NO = 1.0RDER_NO
A.ORDER_NO A.SHIP_DATE A.SHIP_STAT
1a78 20010228 a
1 row selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The table columns contain NOT NULL constraints.
2. The query contains a BETWEEN clause with CONCATENATE function on two columns.

As a workaround, the query works if the column constraint ORDER_NOT_NULL is removed from the
columns of table ORDER.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.10 ORDER BY Query With GROUP BY on Two Joined
Derived Tables Returns Wrong Results

Bug 1694233

The following query with GROUP BY and ORDER BY clauses on two joined derived tables returns the
results in the wrong order.

set flags 'strategy,detail’;

select
cast (a.name as char(5)) as name,
a.datum
from (select name, datum,
cast (count (*) as integer) as count_a
from a
group by name, datum) a
join
(select name, datum,
cast (count (*) as integer) as count_b
from b
group by name, datum) b
on a.name = b.name
and a.datum = b.datum
group by a.name, b.name, a.datum, b.datum, count_a
order by name desc, a.datum asc

Tables:
0=A
1=B
Reduce: 0.NAME, 0.DATUM, 1.NAME, 1.DATUM, CAST (<mapped field> AS INT)
Sort: 0.NAME(a), 0.DATUM(a), 1.NAME(a), 1.DATUM(a), CAST (<mapped field> AS INT)
(@
Cross block of 2 entries
Cross block entry 1
Merge of 1 entries
Merge block entry 1
Aggregate: COUNT (*)
Sort: 0.NAME(a), 0.DATUM(a)
Get Retrieval sequentially of relation 0:A
Cross block entry 2
Merge of 1 entries
Merge block entry 1
Aggregate: COUNT (*)
Sort: 1.NAME(a), 1.DATUM(a)
Conjunct: (0.NAME = 1.NAME) AND (0.DATUM = 1.DATUM)
Get Retrieval sequentially of relation 1:B
A.NAME A.DATUM
AAAA 1-JAN-2000 00:00:00.00 <=== BBBB should be followed by AAAA
BBBB 1-JAN-2000 00:00:00.00
2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query contains a GROUP BY clause on the columns of the two joined derived tables with
GROUP BY.

2. 0ne of the columns from the derived tables is cast as the same data type.
3. The ORDER BY clause references the cast column but using descending order.
There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.11 Left Outer Join Query With CONCATENATE Returns
Wrong Results

Bug 1680135
The following left OJ query with CONCATENATE should return 1 row but instead returns O rows.

set flags 'strategy,detail’;
SELECT ttt.entity_id,
ttt.cpty_id,
ttt.trade_count
FROM (SELECT tt.entity_id,
tt.cpty_id,
SUM (tt.trade_count) as trade_count
FROM (SELECT df.entity_id,
df.cpty_id,
case
when df.deal_status = 'X' then 1 else 0
end as trade_count
from deal_folder df) as tt
GROUP BY tt.entity_id, tt.cpty_id) as ttt
LEFT OUTER JOIN
contact ¢ ON (c.cpty_id = ttt.cpty_id)
WHERE
ttt.trade_count <> 0
and ttt.entity_id || ttt.cpty_id >" ! <==this is causing problem

Tables:

0 = DEAL_FOLDER

1 =CONTACT
Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > ") <=(1)
Cross block of 2 entries (Left Outer Join)

Cross block entry 1
Conjunct: <mapped field> <> 0
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (CASE (WHEN (0.DEAL_STATUS ='X") THEN 1
ELSE 0))
Sort: 0.ENTITY_ID(a), 0.CPTY_ID(a)
Merge of 1 entries
Merge block entry 1
Conjunct: (0.ENTITY_ID || 0.CPTY_ID) >"
Index only retrieval of relation 0:DEAL_FOLDER
Index name DEAL_FOLDER_MONITOR_IDX [0:0]
Cross block entry 2
Conjunct: (<mapped field> <> 0) AND ((0.ENTITY_ID || 0.CPTY_ID) > ") <=(2)
Conjunct: 1.CPTY_ID = 0.CPTY_ID
Index only retrieval of relation 1:CONTACT
Index name CONTACT_IDX [0:0]
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query is a left outer join between a derived table and a table.

2.The derived table contains a GROUP BY clause on the columns of another derived table with an
aggregate function SUM as the output column.

3. The main query has a WHERE predicate containing the CONCATENATE function on two or more
columns of the derived table.

4. The main query has another WHERE predicate which references the output column of the aggregate
function from the derived table.

As a workaround, the query works if the table 1:CONTACT has some rows or the following
CONCATENATE function is replaced by the following predicates:

ttt.entity_id || ttt.cpty_id >"
is replaced by

ttt.entity _id > " AND ttt.cpty_id > "

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.12 Query With UNION in German Collating Sequence Returns
Wrong Results

Bug 1684612

The following query with a UNION clause, in a database where the German Collating Sequence is used by
default, returns wrong results (it should return some rows).

select d.datum, d.id, d.team
from teamer d,
(select s.datum,s.id, s.team
from team_datum s
union all
select datum, id, team
from team_datum
)ass
where
d.datum=s.datum

Tables:
0 = teamer
1 = team_datum
2 = team_datum
Conjunct: 0.datum = <mapped field>
Match
Outer loop
Sort: <mapped field>(a)
Merge of 1 entries
Merge block entry 1
Merge of 2 entries
Merge block entry 1
Get Retrieval sequentially of relation 1:team_datum
Merge block entry 2
Get Retrieval sequentially of relation 2:team_datum
Inner loop
Temporary relation
Sort: <mapped field>(a)
Get Retrieval sequentially of relation O:teamer
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The query is a simple join between a table and a derived table of subselects unioned together.

2.The join predicate uses CHAR data type.

3. The Optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into German collating sequence.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.13 Query With OR Predicate on Aggregate Column Returns
Wrong Results

Bugs 1708342 and 1721323
Query #1:

The following query with an OR predicate should return 1 row with TL.STATUS = 3 but returns an extra row
with TL.STATUS = 5. This row does not satisfy the condition in the predicate "x.summe is null".

set flags 'max_stability’;
set flags 'strategy,detail’;
select
tl.id,
tl.status,
tl.anzahl_stuecke,
X.summe
from tablel t1,
(select sum(anzahl_stuecke) as summe
from table2 t2
where tl.id = t2.id) x
where
tl.status = 3
OR
(t1.status =5 and x.summe is null) ;
Tables:
0=TABLE1
1=TABLE2
Cross block of 2 entries
Cross block entry 1
Conjunct:; (0.STATUS = 3) OR (0.STATUS =5)
Get Retrieval by index of relation 0:TABLE1
Index name XPKTABLEZ1 [0:0]
Cross block entry 2
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (1.ANZAHL_STUECKE)
Get Retrieval by index of relation 1: TABLE2
Index name XPKTABLE?2 [1:1]
Keys: 0.ID = 1.1D

T1ID TI1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL
2 5 10 10

2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query joins a table and a derived table with a column of an aggregate function (e.g. SUM).
2. The WHERE clause contains an OR predicate, where one of the branches references the aggregate
column.

As a workaround, the query works if the branches of the OR predicates are swapped, as in the following
example.

select
tl.id,
tl.status,
tl.anzahl_stuecke,
X.summe
from tablel t1,
(select sum(anzahl_stuecke) as summe
from table2 t2
where tl.id = t2.id) x
where
(t1.status = 5 and x.summe is null)
OR
tl.status = 3 ;
Tables:
0=TABLE1
1=TABLE2
Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 0O:TABLE1
Index name XPKTABLEZ1 [0:0]
Cross block entry 2
Conjunct: ((0.STATUS = 5) AND MISSING (var) OR (0.STATUS = 3)
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (1.ANZAHL_STUECKE)
Get Retrieval by index of relation 1: TABLE2
Index name XPKTABLE?2 [1:1]
Keys: 0.ID = 1.1D
T1ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL
1 row selected

Query #2:
The following query with an OR predicate should return O rows.

set flags 'max_stability";
set flags 'strategy,detail’;
select
t1.id,
t1.status,
tl.anzahl_stuecke,
X.summe
from tablel t1,
(select
sum(anzahl_stuecke) as summe,
'hello’ as Artikel
from table2 t2
where tl.id = t2.id) x
where
tl.id <> 5 and
x.Artikel = 'hello should not be found' and
((t1.status =3) or
(t1.status = 5 and (x.summe is NULL))
)i
Tables:
0 =TABLE1
1=TABLE2
Cross block of 2 entries
Cross block entry 1
Get Retrieval by index of relation 0:TABLE1
Index name XPKTABLEZ1 [0:0]
Bool: 0.ID <> 5
Cross block entry 2

Conjunct; (0.STATUS = 3) OR ((0.STATUS = 5) AND MISSING (var)
Merge of 1 entries
Merge block entry 1
Aggregate: SUM (1. ANZAHL_STUECKE)
Get Retrieval by index of relation 1: TABLE2
Index name XPKTABLEZ2 [1:1]
Keys: 0.ID = 1.ID
Bool: (1.ID <> 5) AND (‘hello’ = 'hello should not be found")

T1ID T1.STATUS T1.ANZAHL_STUECKE X.SUMME
1 3 10 NULL
2 5 10 NULL

2 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query joins a table and a derived table with the column of an aggregate function (e.g. SUM
and a column of a constant string.

2. The WHERE clause contains an OR predicate, where one of the branches references the aggregate
column.

3. The WHERE clause contains additional AND predicates where one of them references the column o
a constant string.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.14 Query With Equality Predicate Included in IN Clause
Returns Wrong Results

Bug 1727181

The following query with an equality predicate included in the IN clause should find the row.

set flags 'strategy,detail’;
sel employee_id
from employees e, departments d
where
e.employee_id = d.manager_id and
d.department_code in (ADMN', 'ENG', 'MKTG') and
d.department_code = 'ENG'

Tables:
0 = EMPLOYEES
1 = DEPARTMENTS
Cross block of 2 entries
Cross block entry 1
Conjunct; (1.DEPARTMENT_CODE ="'ADMN'") OR (1.DEPARTMENT_CODE ="'MKTG')
Conjunct: 1.DEPARTMENT_CODE ='ENG'
Index only retrieval of relation 1:DEPARTMENTS
Index name DEPT_DEPTCODE_MGRID [1:1]
Keys: 1.DEPARTMENT_CODE ='ENG'
Cross block entry 2
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPID_STATUS_CODE [1:1]
Keys: 0.EMPLOYEE_ID = 1.MANAGER_ID
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The query joins two tables using a join predicate.
2. The query has an equality predicate which is also included in the IN clause.

As a workaround, the query works if the equality predicate is moved to the front of the IN clause, as in the
following example.

set flags 'strategy,detail’;
sel employee_id
from employees e, departments d

where
e.employee_id = d.manager_id and
d.department_code = 'ENG' and <== move to front

d.department_code in (ADMN', 'ENG', 'MKTG')

Tables:
0 = EMPLOYEES
1 =DEPARTMENTS
Cross block of 2 entries
Cross block entry 1
Conjunct: 1.DEPARTMENT_CODE ='ENG'
Conjunct: (1.DEPARTMENT_CODE ="'ADMN') OR (1.DEPARTMENT_CODE = 'ENG') OR (
1.DEPARTMENT_CODE = 'MKTG')
Index only retrieval of relation 1:DEPARTMENTS
Index name DEPT_DEPTCODE_MGRID [1:1]
Keys: 1.DEPARTMENT_CODE ="'ENG'
Cross block entry 2
Conjunct: 1.DEPARTMENT_CODE = 'ENG'
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPID_STATUS_CODE [1:1]
Keys: 0.EMPLOYEE_ID = 1. MANAGER_ID
E.EMPLOYEE_ID
00471
1 row selected

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.15 Match Strategy on Columns of Different Size, Using
Collating Sequence, Returns Wrong Results

Bug 1684643

The following query using match strategy on columns of different size, using German collating sequence,
should find the row.

select d.datum, d.abtlg, d.team, d.art
from teamergebnis_kumul d,
(select m.datum,m.abtlg, m.art, m.team
from std_team_datum m, prod_kumul_datum v
where m.datum=v.datum and
m.abtlg=v.abtlg and
m.team=v.produkt AND
m.team="'11.3512'
group by m.datum, m.abtlg, m.art, m.team) AS
s (datum, abtlg, art, team)
where d.datum=s.datum and
d.abtlg=s.abtlg and
d.team=s.team and

d.art=s.art and
d.abtlg='465"' and d.datum="20001031" and
d.team='11.3512";
Tables:
0 = TEAMERGEBNIS_KUMUL
1=STD_TEAM_DATUM
2 = PROD_KUMUL_DATUM
Cross block of 2 entries
Cross block entry 1
Conjunct: 0.TEAM ='11.3512"
Get Retrieval by index of relation 0: TEAMERGEBNIS_KUMUL
Index name IDX_TEAMERGEBNIS_KUMUL_SORT [3:3]
Keys: (0.TEAM ='11.3512") AND (0.DATUM ='20001031") AND (0.ABTLG =
'465")
Cross block entry 2
Conjunct: 0.ABTLG = 1.ABTLG
Conjunct: 0.TEAM = 1.TEAM
Conjunct: 0.ART = 1.ART
Merge of 1 entries
Merge block entry 1
Reduce: 1.TEAM, 1.ABTLG, 1.DATUM, 1.ART
Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a), 1.ART(a)
Conjunct: (1.DATUM = 2.DATUM) AND (1.ABTLG = 2.ABTLG) AND (1.TEAM =
2.PRODUKT)
Match
Outer loop
Sort: 1.TEAM(a), 1.ABTLG(a), 1.DATUM(a)
Conjunct: 1.TEAM ='11.3512'
Get Retrieval by index of relation 1:STD_TEAM_DATUM
Index name IDX_STD_TEAM_DATUM_SORT [2:2]
Keys: (0.DATUM = 1.DATUM) AND (1.ABTLG = '465')
Inner loop
Temporary relation
Sort: 2.PRODUKT(a), 2.ABTLG(a), 2.DATUM(a)
Conjunct: 2.PRODUKT ='11.3512'
Get Retrieval by index of relation 2:PROD_KUMUL_DATUM
Index name IDX_PROD_KUMUL_DATUM_SORT [2:2]
Keys: (2.DATUM = 0.DATUM) AND (2.ABTLG = '465')
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:
1. The main query is a simple join between a table and a derived table of subselect subquery, joining tv
tables using 3 equality predicates.
2.The join predicate uses columns of CHAR data type but different column size.
3. The optimizer uses a match strategy to join them, where a comparison of the join keys requires the
process of encoding the CHAR data type into German collating sequence.

As a workaround, the query works if the match strategy is changed to use cross by using an outline.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.16 Left Outer Join Query With CAST Function on USING
Column Bugchecks

Bug 1802653

The following left outer join query with CAST function on USING column bugchecks.

select count(*) from
(select p.paketwert from
(select
cast(packet as integer) ! <=== CAST causing bugcheck
from
serien inner join sujet using (sujet)
) as p (paketwert)
) as astpreis (paketwert)
left outer join
(select t.paketwert from
(select
packet
from
serien inner join sujet using (sujet)
) as t (paketwert)
) as opt(paketwert)
USING (paketwert) ;

The key parts of this query which contributed to the situation leading to the error are these:

1. The main query is a left outer join of 2 nested derived tables.
2.The CAST function is placed on the column of USING clause.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.0.

2.5.17 Query Using Constant Values in OR Predicates Returns
Wrong Results

Bug 1769447

The following query using constant values in OR predicates should return 3 rows.

set flags 'strategy,detail’;

SELECT coll FROM
(SELECT
t2.coll as coll,
t2.col2 as col2,
t2.col3 as col3
from tablel t1, table2 t2
where tl.coll_id = t2.coll_id
) as
vt (coll, col2, col3)
WHERE
vt.col3>0 AND
vt.col2>=0 AND
(vt.coll <= 3 OR 'hostvar' = 'foo");
Tables:
0 =TABLE1
1=TABLE2
Merge of 1 entries
Merge block entry 1
Conjunct: 0.col1_id = 1.col1_id
Match
Outer loop (zig—zag)
Index only retrieval of relation 0:TABLE1
Index name TABLE1_NDX [0:0]
Innerloop (zig-zag)

Conjunct: (1.col3 > 0) AND (1.col2 >= 0)
Get Retrieval by index of relation 1: TABLE2
Index name TABLE2_NDX [0:0]
Bool: <error: common keyonly boolean no predicates>
CoL1
1

2
3
4
5

6
6 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

1. The query selects from a derived table of a subselect joining 2 tables.
2. The WHERE clause contains 2 AND predicates and 1 OR predicate.
3. The OR predicate contains a branch of constant predicates, such as "1 = 2".

m m

As a workaround, the query works if the constant condition "hostvar' = 'foo™ is omitted, as in the following

example.

set flags 'strategy,detail’;

SELECT coll from
(SELECT
t2.coll as coll,
t2.col2 as col2,
t2.col3 as col3
from tablel t1, table2 t2
where tl.coll_id = t2.coll_id
) as
vt (coll, col2, col3)
WHERE
vt.col3 >0 AND
vt.col2 >=0 AND
(vtcoll<=3
! OR 'hostvar' = 'foo’ <=== commented out
)i
Tables:
0 =TABLE1
1=TABLE2
Merge of 1 entries
Merge block entry 1
Conjunct: 0.coll_id = 1.coll_id
Match
Outer loop (zig—zag)
Index only retrieval of relation 0:TABLE1
Index name TABLE1_NDX [0:0]
Innerloop (zig-zag)
Conjunct: (1.col3 > 0) AND (1.col2 >= 0) AND (1.coll <= 3)
Get Retrieval by index of relation 1: TABLE2
Index name TABLE2_NDX [0:0]
Bool: 1.coll <=3
CoL1
1
2
3
3 rows selected

This problem has been corrected in Oracle Rdb Release 7.1.0.

Chapter 3
Enhancements

3.1 Enhancements Provided in Oracle Rdb Release
7.1.0.1

3.1.1 SQL Now Supports a Native ABS Function

In prior releases of Oracle Rdb, the ABS function was provided by the SQL_FUNCTIONS script. This
function was a DOUBLE PRECISION function that allowed values of most data types to be processed.

However, there were some inconsistencies introduced when large BIGINT values were used as rounding
errors were introduced since DOUBLE PRECISION supports about 16 digits accuracy compared to the 18
digits supported by BIGINT. In addition, the INTERVAL data type could not be used with the provided
function.

With this release, a new conditional function, ABS, conforming to the SQL:1999 database language standar
is now available. The ABS function returns NULL if the passed value expression evaluates to NULL. The
datatype of the result is the same as the passed value expression and supports scaled values of these data
types: TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE PRECISION, INTERVAL,
DECIMAL, NUMERIC and NUMBER.

The absolute value function (ABS) returns NULL if the value expression evaluates to NULL. If the value
expression evaluates to a value less than zero then that value is negated so that a positive value is returnec
Otherwise the value is returned unchanged. For instance, ABS (—1) will return the value 1.

ABS (a) is equivalent to the CASE expression:

case
when a < 0 then — a
else a

end

USAGE NOTES:

» The SQL_FUNCTIONS script still includes the ABS external function definition for those stored
definitions (procedures, functions, triggers, views, etc.) or compiled applications that currently use it.
However, new references to ABS will use the new builtin conditional expression.

« Applications wishing to continue to use the external function should use delimiters around the ABS
function name, as in the following example.

SQL> set quoting rules 'SQL92";
SQL> select "ABS" (v) from T,;

The delimited name will force the function definition to be used.
* Please refer to Appendix G, Oracle Rdb7 SQL Reference Manual, Volume 3 for more information on
the SQL_FUNCTIONS script.

Example 1: This example uses the ABS function on an INTERVAL result of a date subtraction.

SQL> select

cont> ABS ((birthday - current_date) year(3))
cont> from employees

cont> order by employee_id

cont> limit to 10 rows;

054
047
047
064
068
062
044
069
050
074
10 rows selected

Example 2: This shows a more complex use of ABS within a statistical function.

SQL> —- what is the average time in a job for each employee

SQL> —- exclude anyone on there first job

SQL> select

cont> employee_id,

cont> AVG (ABS (EXTRACT (MONTH FROM (job_start — job_end) month (4))))
cont> as "Average Job" edit using '-—,———,——9.99" years"

cont> from JOB_HISTORY

cont> where employee_id < '00200'

cont> group by employee_id

cont> having COUNT (*) > 1;

EMPLOYEE_ID Average Job
00164 14.00 years
00165 22.67 years
00166 20.00 years
00167 14.50 years
00168 26.33 years
00169 22.67 years
...etc...

00197 26.33 years
00198 37.00 years
00199 35.00 years

30 rows selected
%RDB-I-ELIM_NULL, null value eliminated in set function

3.1.2 New DUMP Output Format for LogMiner

A new output format type of "DUMP" has been added to the RMU /UNLOAD /AFTER_JOURNAL
command. This output format is intended solely as a debug and informational tool. For each column of a
record, the first 200 bytes of data contents are formatted such that binary numeric fields are converted to te»
and text fields are displayed with periods (.) replacing non—printable characters. NULL columns are indicate
with the character string "NULL". The actual data length is indicated for VARCHAR columns.

Example output with the /FORMAT=DUMP qualifier:

$ RMU /UNLOAD /AFTER_JOURNAL MYDB.RDB MYDB.AIJBCK /FORMAT=DUMP
ITABLE=(NAME=ALL_DATATYPES_TBL, OUTPUT=SYS$OUTPUT:)
RDB$LM_ACTION M

RDB$LM_RELATION_NAME :ALL_DATATYPES_TBL
RDB$LM_RECORD_TYPE 125

RDB$LM_DATA_LEN 1460

RDB$LM_NBV_LEN : 66

RDB$LM_DBK 1 46:635:0

RDB$LM_START_TAD 1 21-JUL-2001 15:48:52.6512009
RDB$LM_COMMIT_TAD 1 21-JUL-2001 15:48:53.0586846

RDB$LM_TSN 1160

RDB$LM_REC_VER i1

TINT 1 -123

SINT :-321

INTEGER 1 -212

BINT - NULL

DECIMAL 1 -145

NUMERIC - NULL

FLOAT : —=1.000000000000000E+000
DOUBLE_PRECISION : —2.000000000000000E+000
CHAR1 tA

CHARZ20 : ABCDEFGHIJKLMNOPQRST
VCHAR_COL : (10) ABCDEFGHIJ

Note

The contents and format of the output when the /FORMAT=DUMP qualifier is specified
may change in the future.

If needed, the record definition (.RRD) file may be used to determine the actual data type for each field of th
table(s) being extracted.

3.1.3 Data and SPAM Prefetch Screens Added to RMU/SHOW
STATISTICS

Two new screens have been added to the PIO statistics part of RMU/SHOW STATISTICS. These screens
display prefetch statistics (APF and DAPF). In prior versions, the DAPF statistics were displayed on the
"Fetch” screens. Those statistics were moved to the new prefetch screens. In addition, APF statistics are no
displayed on the new screens as well. An example is provided below:

Node: NODEL1 (1/1/1) Oracle Rdb V7.0-62 Perf. Monitor 6-AUG-2001 10:28:10.65
Rate: 3.00 Seconds PIO Statistics——Data Prefetches Elapsed: 00:58:17.86

Page: 1 of 1 DEV:[DIR]DB.RDB Mode: Online
statistic......... rate.per.second............. total....... average......
name.............. max..... CUr..... avg....... count....... per.trans....
APF start:success 0 0 0.4 872 1.0
failure 0 0 0.0 101 0.1
APF 1/O: utilized 0 0 0.4 872 1.0
: wasted 0 0 0.0 0 0.0
DAPF start:success 0 0 0.0 74 0.0
failure 0 0 0.0 62 0.0
DAPF 1/O: utilized 0 0 0.0 18 0.0
: wasted 0 0 0.0 56 0.0

The information on these screens may be used to determine the effectiveness of the APF and DAPF feature
The individual rows may be interpreted as follows:

» The "APF start:success" statistics shows how many times Oracle Rdb successfully initiated an 1/O tc
prefetch a buffer.

» The "APF start:failure" statistics shows how many times Oracle Rdb attempted to initiate a prefetch
but was unable to obtain the necessary buffer lock to proceed.

» The "APF 1/O: utilized" statistics shows how many times Oracle Rdb actually used a buffer that was

prefetched.
« The "APF I/0O: wasted" statistics shows how many times Oracle Rdb prefetched a buffer but never
actually used it.

3.1.4 RMU/SHOW STATISTICS Stall Log Lock Information
Optional

Bug 1704232

A new optional keyword "[NOJLOG_STALL_LOCK" has been added to the "/OPTIONS" qualifier of the
RMU/SHOW STATISTICS command. When using the /STALL_LOG qualifier to write stall messages to a
log file, you can now specify JOPTIONS=NOLOG_STALL_LOCK to prevent lock information from being
written to the log file.

The following example shows stall log information first with the lock information and then without the lock
information:

$ RMU /SHOW STATISTICS /NOINTERACTIVE /STALL_LOG=SYS$OUTPUT: -
DUAO:[DB]JMFP.RDB
Oracle Rdb X7.1-00 Performance Monitor Stall Log
Database DPA500:[RDB_RANDOM.RDB_RANDOM_TST_247]RNDDB.RDB;1
Stall Log created 4-SEP-2001 11:27:03.96
11:27:03.96 0002B8A1:1 11:27:03.67 waiting for record 118:2:2 (PR)
State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 118:2:2"
Blocker: 000220A7 RND_TST_24716 OF019E52 EX Grant
Waiting: 0002B8A1 RND_TST_24715 4500C313 PR Wait
11:27:03.96 0002B8A8:1 11:27:02.32 waiting for record 101:3:0 (EX)
State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 101:3:0"
Blocker: 000220AD RND_TST_24710 0BO0176A PR Grant
Blocker: 000220A7 RND_TST_24716 52018A3F PR Grant
Waiting: 0002B8A8 RND_TST_2474 3CO0B5AF EX PR Cnvrt
11:27:03.96 0002B89C:1 11:27:00.15 waiting for record 114:4:1 (PR)
State... Process.ID Process.name... Lock.ID. Rq Gr Queue "record 114:4:1"
Blocker: 000220A7 RND_TST_24716 180033CC EX Grant
Waiting: 0002B89C RND_TST_2479 110066BA PR Wait

$ RMU /SHOW STATISTICS /NOINTERACTIVE /STALL_LOG=SYS$OUTPUT: -
DUAO:[DB]JMFP.RDB /OPTIONS=NOLOG_STALL_LOCK

Oracle Rdb X7.1-00 Performance Monitor Stall Log

Database DPA500:[RDB_RANDOM.RDB_RANDOM_TST_247]RNDDB.RDB;1

Stall Log created 4-SEP-2001 11:28:34.68

11:28:34.69 0002B8B8:1 11:28:33.69 waiting for logical area 146 (PR)

11:28:34.69 0002B8A8:1 11:28:32.76 waiting for record 114:4:2 (PR)

11:28:34.69 0002B8B3:1 11:28:33.06 waiting for record 114:4:2 (PR)

11:28:34.69 0002B8B0:1 11:28:31.96 waiting for record 111:7:7 (EX)

3.1.5 New Option for the GET DIAGNOSTICS Statement

For Oracle Rdb Release 7.1.0.1, a new option has been added to the GET DIAGNOSTICS statement:
IMAGE_NAME.

This keyword requests that the activating image name be returned to the caller. The image name includes tt
node name from which the attach was started. This might be a node different than that on which the Rdb
server is running.

The data is returned to the caller as a VARCHAR (255) value and should be assigned to either a VARCHAF
or CHAR data type that supports the ASCII character set.

The following example uses a SQL procedure to fetch the image name for the currently running application
(in this case interactive SQL).

SQL> set flags 'trace’;

SQL> begin

cont> declare :i varchar(512);

cont> get diagnostics :i = image_name;

cont> trace char_length (:i);

cont>trace ™ || i || ™;

cont> end,;

~Xt: 57

~Xt: "MYNODE::111DUA618:[SYS0.SYSCOMMON.][SYSEXE]SQL$71.EXE;1"

3.1.6 Alternate Outline Ids

If outlines have not been disabled, Oracle Rdb will search for an appropriate outline for the query it is
optimizing, thus allowing some user control of the strategy used for execution of a query.

The OPTIMIZE USING clause may be used to tell the optimizer which outline to use for compilation. If no
OPTIMIZE USING clause is present, Rdb uses the query to generate an identifier which it will use to try to
locate an appropriate outline.

In many situations, such as when using third party software, it is not possible for the user to provide an outli
name for the query and thus the only alternative Rdb had was to try to locate an outline with a matching
identifier.

As the identifier is a hashed value that depends on the query structure, small changes in the query, such as
different literal values, can change the identifier produced as in the following example.

SQL> set flags 'outline’;
SQL> select * from employees where employee_id = '1";
—— Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_8797A75D6D03F6BD_00000000
id '8797A75D6D03F6BDD211A092CE6F3A2C!
mode 0
as (
query (
—— For loop
subquery (
EMPLOYEES O access path index EMP_EMPLOYEE_ID
)
)
)

compliance optional ;
0 rows selected
SQL> select * from employees where employee_id ='9999";
—— Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_C9F12D27AC5D3163_00000000
id 'C9F12D27AC5D3163907A4329FDC8170A'
mode 0
as (

query (
—— For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID

)

)
)

compliance optional

In this example, the two queries are optimized the same but the differing outline identifiers means that two
different outlines would have to be created to control each query.

Oracle Rdb has now been enhanced to allow the optional creation of alternate outline identifiers. In this
release, the optimizer discards literal values when producing the identifiers.

A new SET FLAGS attribute has been introduced to allow the control of these alternate identifiers, using
either the SQL SET FLAGS statement or the RDMS$SET_FLAGS logical name.

ALTERNATE_OUTLINE_ID(LITERALS)
This attribute is not case sensitive and may be abbreviated to:
ALT(LIT)

The following example uses SET FLAGS to enable alternate query identifiers:

SQL> set flags 'alt(LIT), outline’;
SQL> select * from employees where employee_id = '1";
—— Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id '847AD7287E247D37E8E4CC8221FFC12E'
mode 0
as (

query (
—— For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID

)
)
)

compliance optional ;
0 rows selected
SQL> select * from employees where employee_id ='9999";
—— Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id '847AD7287E247D37ES8E4CC8221FFC12E'
mode 0
as (
query (
—— For loop
subquery (
EMPLOYEES O access path index EMP_EMPLOYEE_ID
)
)
)

compliance optional
0 rows selected

Note that now the two outlines have the same identifier and the user may now store this more generic outlin
to be used by any similar query where only the literal values differ. For example:

SQL> set flags "alt(lit)';

SQL> create outline ol from (select * from employees where employee_id ='1");
SQL> set flags 'strat’;

SQL> select * from employees where employee_id = '1";

~S: Outline "O1" used

Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

SQL> select * from employees where employee_id = 'AAAAAA';

~S: Outline "O1" used

Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

Any outline stored for a query without the ALTERNATE_OUTLINE_ID flag being set will be created using
the full query as in previous versions and will take precedence over any generic outline. For example:

SQL> set noflags;
SQL> create outline ol from (select * from employees where employee_id ='1";
SQL> set flags 'strat’;
SQL> select * from employees where employee_id = '1";
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id ='9999";
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> set noflags;
SQL> set flags 'alternate(lit),nooutline’;
SQL> create outline 02 from (select * from employees where employee_id ='1");
SQL>
SQL> set flags 'strat’;
SQL> select * from employees where employee_id = '1";
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id ='9999";
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL>
SQL> set flags 'noalt’;
SQL> select * from employees where employee_id = '1";
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id ='9999";
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> drop outline o1,
SQL> set flags ‘alt(literals)’;
SQL> select * from employees where employee_id = '1";
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected
SQL> select * from employees where employee_id = '9999';
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
0 rows selected

As shown in the previous example, Oracle Rdb will try to locate an outline using the more generic identifier
only if the ALTERNATE_OUTLINE_ID flag has been set.

The ALTERNATE_OUTLINE_ID flag is not set by default and must be explicitly set using either SET
FLAGS or the RDMS$SET_FLAGS logical.

This feature is available in Oracle Rdb Release 7.1.0.1.

3.1.7 Field Widths Wider on Row Cache Overview Display

On the "Row Cache Overview" display, the width of the "Searches" column has been increased from 9 to 1C
characters to allow a display of up to 4294967295 (after this value, the 32-bit counter wraps back to zero). |
addition, the width of the cache name column is tied to the screen width. If the screen is set to be wide enou
(over 90 columns), the full cache name will be displayed; normally, only the first 24 characters of the name
are displayed.

Additionally, the comparison used when sorting by values on the "Row Cache Overview" display has been
modified to be unsigned (rather than signed). This prevents some cases of very large values being sorted in
incorrect order.

3.1.8 FOR Counted Loop Enhancements

In Oracle Rdb Release 7.1, the FOR counted loop was added to SQL. This type of loop increments a declar
variable from an initial value to a final value. In the prior release of Rdb, the data type of the variable had to
be a numeric data type (TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE

PRECISION, NUMBER, NUMERIC, or DECIMAL).

The following enhancements have been made for this release:

» The following data types are now also legal for this type of FOR loop.

INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND

If INTERVAL is used, then the initial and final values must be of the same type (i.e. the expressions
must have the same data type as the loop variable).

» The data type rules for the initial and final values have been relaxed when the loop variable is
numeric. These value expressions can be any compatible numeric data type. For instance, floating
point or scaled numeric values can now be used.

* A new optional STEP clause has been added to control the size of the increment between loop
iterations. The step size is specified using a numeric value expression.

SQL> begin

cont> declare :i integer;
cont>for :iin 1to 20 step 5
cont>do

cont> trace :i;

cont> end for;

cont> end;

~Xt: 1

~Xt: 6

~Xt: 11
~Xt: 16

NOTE: Even if the loop control variable is an INTERVAL type, the STEP must be nhumeric type. In addition,
the value must be greater than zero: use the REVERSE keyword to decrement the loop control variable.

FORMAT

counted-for-statement =

» FOR <variable-name>
Lp <heginning-label> : J

— _» REVERSE —J

4

value-exp; — 10 —p value-expr

h

(

4

DO Tp compound-use-statement

Lb STEP value-expr J

(Enp FOR

Hul

4
-

]
A 4

L; <ending-label>

USAGE NOTES

» The FOR loop uses the keyword TO as a separator between the initial and final value expressions.
This same keyword is used to separate the field names in an interval qualifier. Therefore, there is an
ambiguity possible when an apparently well-formed expression is used.

SQL> begin
cont> declare :i interval year;
cont> for :i in interval'l' year to interval'4'year
for :i in interval'l' year to interval'4'year
N

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, MONTH,
%SQL-F-LOOK_FOR_FIN, found INTERVAL instead

This occurs because the TO separator is interpreted as part of the INTERVAL literal or expression.
Programmers must enclose the initial expression in parentheses to avoid this ambiguity if it ends witl
an interval qualifier.

* The STEP value expression is evaluated before the loop variable is assigned a value. The value mu:
be greater than zero and never NULL. If these constraints are violated, a runtime error is reported as
shown in this simple example.

SQL> begin

cont> declare I, :s integer;

cont>

cont> —- set the step size

cont> set :s =0;

cont>

cont> for :l'in reverse 1 to 10 step :s
cont>do

cont> trace :l;

cont> end for;

cont> end;

%RDB-E-NOT_VALID, validation on field STEP caused operation to fail
SQL>

Example 1: This example shows an INTERVAL type as the loop variable.

SQL> begin

cont> declare :i interval year;
cont> for :i in (interval'l' year) to (interval'4'year)
cont> do

cont> trace i

cont> end for;

cont> end;

~Xt: 01

~Xt: 02

~Xt: 03

~Xt: 04

Example 2: This example uses a complex expression as the STEP expression.

SQL> begin

cont> declare :i interval year;

cont> declare :k interval year = interval'18'year;
cont> declare :j integer = 2;

cont>

cont> for :i in (interval'l' year) to :k/2 step :j*2
cont> do

cont> trace i

cont> end for;

cont> end;

~Xt: 01

~Xt: 05

~Xt: 09

3.1.9 Enhancements to SET DISPLAY Statement for Interactive
SQL
This release of Oracle Rdb, 7.1.0.1, includes the following enhancements to the SET DISPLAY statement.
* Anew NULL STRING clause to change the way NULL values are displayed by interactive SQL.
* A new DEFAULT NULL STRING clause to revert to using the text '"NULL".
* Anew [NO] COMMENT clause to disable or enable the display of comment text by other SHOW
commands (e.g. SHOW TABLE).

FORMAT

set-display =

—» DISPLAY » COMMENT

Ly no J EDIT STRING j

v

QUERY HEADER
ROW COUNTER
DEFAULT NULL STRING
NULL STRING <literal> -
_C: <host-variable> —

4

___» CHARACTER SET __4 ’ <character-set-name> ’ _J

USAGE NOTES

« The width of the displayed column is calculated using the maximum of the length of the column
name, the length of the QUERY HEADER, the length of the NULL string and the size of the
formatted data.

» The statement SET DISPLAY DEFAULT NULL STRING is equivalent to SET DISPLAY NULL
STRING 'NULL".

« The SET NULL statement has been added for compatibility with Oracle SQL*Plus. SET NULL is a
synonym for SET DISPLAY NULL STRING ", and SET NULL 'literal' is equivalent to SET
DISPLAY NULL 'literal'.

« SET DISPLAY NULL STRING accepts a string literal, or a declared local variable.

« SHOW DISPLAY now displays the current NULL string.

SQL> show display

Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 30 lines

Line length is set to 80 bytes

Display NULL values using "NULL"

» The GET ENVIRONMENT statement now includes the NULL_STRING keyword that can be used to
save the currently defined text.

Example 1: Replace the NULL values with text to make the output easier to read.

SQL> select job_start, job_end,

cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)

cont> from job_history jh

cont> where employee_id ='00164";

JOB_START JOB_END

21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

SQL> set display null string '(still employeed)’

SQL> select job_start, job_end,

cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)

cont> from job_history jh

cont> where employee_id ='00164";

JOB_START JOB_END

21-Sep-1981 (still employeed) Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

Example 2: Disable the comment display to make the output of SHOW easier to read.

SQL> show domain id_dom

ID_DOM CHAR(5)

Comment: standard definition of employee id
SQL> set display no comment;

SQL> show domain id_dom

ID_DOM CHAR(5)

SQL>

Example 3: Save the current NULL string using GET ENVIRONMENT and restore after executing a query.

SQL> declare :ns varchar(100);
SQL> get environment (session) :ns = NULL_STRING;

SQL> set null;
SQL> select job_start, job_end,

cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)

cont> from job_history jh

cont> where employee_id ='00164";

JOB_START JOB_END

21-Sep-1981 Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

SQL> set display null string :ns;

SQL> select job_start, job_end,

cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)

cont> from job_history jh

cont> where employee_id ='00164";

JOB_START JOB_END

21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

3.1.10 New BITSTRING Built In Function

Rdb now supports a BITSTRING function that can be used to extract selected bits from a binary data value.
This functionality is primarily intended to query the bit values stored in the RDB$FLAGS columns in the Rdb
system table but can also be used for user data.

BITSTRING accepts numeric and date/time values and processes them as bit arrays. The first (least
significant) bit is numbered 1. The most significant bit depends on the data type.

* TINYINT has 8 bits

* SMALLINT has 16 bits

* INTEGER has 32 bits

* BIGINT, DATE, TIME, TIMESTAMP and INTERVAL types have 64 bits

FORMAT

BITSTRING —» (—» value-expression —

L; FROM numeric -expression ») —»
Lb FOR numeric-expression _

USAGE NOTES

» The numeric expression after the FOR and FROM keywords must be an unscaled numeric value.

« If the numeric expression of the FOR clause is less than or equal to zero then it will be assumed equ
to 1.

« If the FOR clause is omitted, it will default to a value that includes all remaining bits of the source
value.

* If the FOR clause specifies a larger value than the number of bits remaining in the source then it will
only return the remaining bits.

Example: Bit 1 in the RDB$FLAGS column of RDB$RELATIONS indicates that the table is a view. This
example uses this query to fetch the names of all user defined views in the PERSONNEL database.

SQL> select rdb$relation_name

cont> from rdb$relations

cont> where rdb$system_flag = 0 and

cont> bitstring (rdb$flags from 1 for 1) = 1,
RDB$RELATION_NAME

CURRENT_JOB

CURRENT_SALARY

CURRENT_INFO

3 rows selected

SQL>

3.1.11 New SET PAGE LENGTH Command for Interactive SQL

SQL now includes a SET PAGE LENGTH statement to size the page. Currently this is only used by the
pagination control in the SQL HELP command.

FORMAT

USAGE NOTES

» The integer value must be a value between 10 and 32767.

* SET PAGE LENGTH can be used to effectively disable the paging performed by help by setting the
length to a high value such as 32000.

» The page length is automatically set upon entry to interactive SQL and is based on the OpenVMS
terminal setting for this session.

* The SHOW DISPLAY command can be used to view the currently defined page length.

This example uses the SET PAGE LENGTH command to change the pagination length of HELP.

SQL> set page length 40;

SQL> show display

Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 40 lines

Line length is set to 80 bytes

Display NULL values using "NULL"

3.1.12 New ALTER CONSTRAINT Statement

Oracle Rdb Release 7.1 includes an ALTER CONSTRAINT statement.

FORMAT

ALTER CONSTRAINT <constraint-name> —

COMMENT IS .l_; ‘<text-literal>’
I -
constraint-attributes

constraint-attributes =

—r—» DEFERRABLE

INITIALLY

>
IMMEDIATE j
DEFERRED

—» NOT DEFERRABLE

INITIALLY IMMEDIATE

_J

— INITIALLY IMMEDIATE

DEFERRABLE

NOT DEFERRABLE —

— INITIALLY DEFERRED

Pled]e] &

DEFERRABLE

_

Note: constraint—attributes are described in the Oracle Rdb New and Changed Features Manual.

USAGE NOTES

* If a constraint attribute is changed, it will only be effective for future references to the table
containing that constraint. That is, if a constraint is already active then it will use the previously

defined attributes.

» The constraint name can be prefixed with an alias name as in the following example.

SQL> alter constraint db1.ALL_UNIQUE
cont> deferrable initially deferred;

This example shows how ALTER CONSTRAINT can be used to change the constraint attributes and add a

comment to a constraint.

SQL> set dialect 'sql99';

SQL> attach ‘file db$:mf_personnel’;

SQL>

SQL> create table PERSON

cont> (last_name char(20)

cont> constraint MUST_HAVE_LAST_NAME
cont> not null

cont> deferrable,

cont> first_name char(20),

cont> birthday date

cont> constraint MUST_BE_IN_PAST

cont> check (birthday < current_date)

cont> not deferrable,

cont> constraint ALL_UNIQUE

cont> unique (last_name, first_name, birthday)
cont> deferrable initially immediate

cont>);

SQL>

SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
Unique constraint

Null values are considered distinct
Table constraint for PERSON
Evaluated on each VERB
Source:

UNIQUE (last_name, first_name, birthday)

MUST_BE_IN_PAST
Check constraint

Column constraint for PERSON.BIRTHDAY
Evaluated on UPDATE, NOT DEFERRABLE
Source:

CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
Not Null constraint
Column constraint for PERSON.LAST_NAME
Evaluated on COMMIT
Source:

PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

SQL>

SQL> alter constraint ALL_UNIQUE

cont> deferrable initially deferred;

SQL>

SQL> alter constraint MUST_HAVE_LAST_NAME
cont> comment is 'We must assume all persons have a name
cont> not deferrable;

SQL>

SQL> alter constraint MUST_BE_IN_PAST

cont> deferrable initially immediate;

SQL>

SQL> show table (constraint) PERSON
Information for table PERSON

Table constraints for PERSON:
ALL_UNIQUE
Unique constraint
Null values are considered distinct
Table constraint for PERSON
Evaluated on COMMIT
Source:
UNIQUE (last_name, first_name, birthday)

MUST _BE_IN_PAST
Check constraint
Column constraint for PERSON.BIRTHDAY
Evaluated on each VERB
Source:
CHECK (birthday < current_date)

MUST_HAVE_LAST_NAME
Not Null constraint
Column constraint for PERSON.LAST_NAME
Evaluated on UPDATE, NOT DEFERRABLE
Comment: We must assume all persons have a name
Source:
PERSON.LAST_NAME NOT null

Constraints referencing table PERSON:
No constraints found

SQL>
SQL> commit;

3.1.13 DECLARE Variable Now Supports CHECK Constraint

Variables declared within a compound statement (BEGIN...END) can now include a CHECK constraint to
prevent out of range assignments to variables.

FORMAT

varable-declaration =

—— DECLARE j—y <variable-name>] t:
< consmmj]

T UPDATABLE

M
L

LC: data-type
<domain-name:> J L; default-clause _) L_. constraint-clause _J

constraint-clause =

—p» CHECK — (search-condition)

L
b

Lb constraint-attributes

USAGE NOTES

» The constraint—clause is applied to all variables listed in DECLARE. The keyword VALUE can be
used as a placeholder for the variable name with SQL correctly applying the constraint to all
variables.

* Only the NOT DEFERRABLE and INITIALLY IMMEDIATE syntax is supported for variable
constraints. This is also the default if no constraint—attributes are specified.

* A runtime error is signaled if the constraint is violated. This error will include the name of the
variable.

» When a DEFAULT is not used in the declare statement, the contents of the variable are undefined.
Therefore, any variable that uses a CHECK constraint must also provide a DEFAULT clause to
ensure that the variable's value is consistent.

 Currently module global variables do not support constraints. This is planned for a future release of
Oracle Rdb.

The following example shows the use of a CHECK constraint to prevent illegal values being assigned to
control variables for a REPEAT loop. The singleton SELECT will actually return zero to the local variable P
which will cause a variable validation to fail.

SQL> begin

cont> declare :v integer = 0 check (value is not null);

cont> declare :p integer = 1 check (value is not null and value <> 0);
cont>

cont> repeat

cont> select count(*) into :p

cont> from employees

cont> where employee_id ='00000";

cont> set:v=:+:p;

cont> until :v > 1000

cont> end repeat;

cont> end;

%RDB-E-NOT_VALID, validation on field P caused operation to fail

3.1.14 RMU/SHOW STATISTICS Active User Stall Messages
Sorted by Process ID

The RMU/SHOW STATISTICS "Active User Stall Messages" display now includes the ability to sort the list
of database users by process ID (OpenVMS PID). The Config option on the horizontal menu at the bottom ¢
the screen can be used to control how the information is to be sorted. By default, the display is unsorted.

3.1.15 RMU /REPAIR /INITIALIZE ONLY_LAREA_TYPE Keyword

This note was inadvertently left out of the Oracle Rdb Release 7.1.0 Release Notes.

A new ONLY_LAREA_TYPE keyword has been added to the RMU /REPAIR /INITIALIZE qualifier. This
keyword, along with the /INOSPAM and /NOABM qualifiers, allows only the logical area " type " field to be
updated in the AIP (area inventory pages). Avoiding SPAM page updates significantly improves performanc
of this operation.

The RMU /UNLOAD /AFTER_JOURNAL and RMU /SHOW STATISTICS commands use the on-disk area
inventory pages (AIPs) to determine the appropriate "type" of each logical area. However, this logical area
information in the AIP is generally unknown for logical areas created prior to Oracle Rdb Release 7.0.1. If th
RMU /UNLOAD /AFTER_JOURNAL command cannot determine the logical area type for one or more AIP
entries, a warning message is displayed for each such area and may ultimately return logical DBKEYs with
"0" (zero) area number for records stored in mixed format storage areas.

In order to update the on disk logical area "type" in the AIP, the RMU /REPAIR utility must be used. The
/INITIALIZE = LAREA_PARAMETERS =optionfile qualifier can be used with the /TYPE qualifier. For
example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an options
file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the /AREA=name qualifier can be used to identify the specific storage areas th
are to be updated. For example, to repair the EMPLOYEES table of the MF_PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE
The /ITYPE qualifier specifies the type of a logical area. The following keywords are allowed:

* TABLE - Specifies that the logical area is a data table. This would be a table created using the SQL
"CREATE TABLE" syntax.

* BTREE - Specifies that the logical area is a b—tree index. This would be an index created using the
SQL "CREATE INDEX TYPE IS SORTED" syntax.

* HASH - Specifies that the logical area is a hash index. This would be an index created using the SG
"CREATE INDEX TYPE IS HASHED" syntax.

* SYSTEM - Specifies that the logical area is a system record which is used to identify hash buckets.
Users cannot explicitly create these types of logical areas. This type should NOT be used for the
RDB$SYSTEM logical areas. This type does NOT identify system relations.

» BLOB - Specifies that the logical area is a blob (segmented string; list of byte varying) repository.

There is no explicit error checking of the "type" specified for a logical area. However, an incorrect type may
cause the RMU /UNLOAD /AFTER_JOURNAL command to be unable to correctly return valid logical
DBKEYSs.

The ONLY_LAREA TYPE keyword can be specified along with the /INOSPAM and /NOABM qualifiers to
cause only the logical area type field to be updated in the area inventory pages. All other actions specified ir
the options file are ignored when ONLY_LAREA_TYPE is specified. By updating only the logical area type
in the AIP entries and not the SPAM pages, the RMU /REPAIR operation can be considerably faster.

3.1.16 RMU/SHOW STATISTICS Cluster Data Collection
Performance Enhancement

The RMU /SHOW STATISTICS Utility has been enhanced to perform "asynchronous" data gathering when
statistics are being displayed cluster—wide. Previously, a request for statistics was sent to the remote statisti
server and then the response was received synchronously. This was repeated for each node being monitore
each data refresh cycle.

Now, the requests for information are sent to all nodes at once and then the replies are read as they becom
available. This reduces some of the the delay associated with gathering statistics from multiple nodes in a
cluster.

3.1.17 RMU Extract has Enhanced Extract of Conditional
Expressions

This release of Oracle Rdb now includes support for the new ABS function by RMU Extract. RMU Extract
decodes case expressions into ABS (absolute value) functions.

ABS (a) is equivalent to:

CASE
WHEN a <0 THEN -a
ELSE a

END

In addition, similar forms of CASE expressions are also converted to ABS.

CASE
WHEN a <=0 THEN -a
ELSE a

END

and

CASE
WHEN a >0 THEN a
ELSE -a

END

and

CASE
WHEN a >=0 THEN a
ELSE -a

END

It is possible that RMU Extract will change existing CASE expressions into this more compact syntax, even |
it was not originally coded as an ABS function call.

Chapter 4
Documentation Corrections, Additions and Changes

This chapter provides corrections for documentation errors and omissions.

4.1 Documentation Corrections

4.1.1 DROP INDEX Now an Online Table Operation

The example for the following note was in error in the original documentation.

DROP INDEX can now be used when other users are processing the table on which the index is defined. Tt
requires that the index has previously been disabled with the ALTER INDEX ... MAINTENANCE IS
DISABLED statement.

Once maintenance is disabled for an index, it is no longer used by queries on the table. For example, it is nc
used for retrieval and it is not updated by INSERT, DELETE or UPDATE statements. Therefore, with this
release, Rdb has relaxed the requirement of EXCLUSIVE table access for DROP INDEX.

Oracle recommends that the DROP INDEX statement immediately be followed by a COMMIT statement so
that all locks on the system metadata be released. Otherwise, access to this and other tables may be stallec
waiting for rows locked in the tables RDB$INDICES, RDB$INDEX_SEGMENTS,

RDB$STORAGE_MAPS, and RDB$STORAGE_MAP_AREAS.

This change benefits very large databases (VLDB) which have the need to drop indices stored in MIXED
format storage areas on large cardinality tables. These indices may take several hours to erase, which in
previous versions required taking the table offline from normal processing until the DROP INDEX completed

Note that indices stored in UNIFORM format storage areas do not take long to DROP due to optimizations
which can be made for UNIFORM areas.

—— Disable the index maintenance. This requires exclusive access to the
—- table, but takes a very short time. This should be done during normal
—- offline maintenance

set transaction read write;

alter index TRANSACTION_POSTING_INDEX
maintenance is disabled;

commit;

—— Once disabled the index can be dropped at any time

set transaction read write;
drop index TRANSACTION_POSTING_INDEX;

commit;

Please note that DROP INDEX will write before image data to the snapshot files (.SNP) if the transaction is
started in a mode such as SHARED or PROTECTED. Snapshots can be disabled on the database to avoid
excessive snapshot file 1/O during concurrent DROP INDEX operations. Naturally, this may not be possible
under normal workloads.

4.2 Address and Phone Number Correction for
Documentation

In release 7.0 or earlier documentation, the address and fax phone number listed on the Send Us Your
Comments page are incorrect. The correct information is:

FAX —— 603.897.3825
Oracle Corporation

One Oracle Drive
Nashua, NH 03062-2804
USA

4.3 Online Document Format and Ordering
Information

For release 7.1, we are providing documentation in Adobe Acrobat format and HTML format. All of the
documentation is available in one or both of these formats on the Oracle Rdb Documentation CD—-ROM, pat
number A90838-01.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase documentation from
http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed documentation.

4.3.1 Documentation in Adobe Acrobat Format

You can view the documentation in Adobe Acrobat format using the Acrobat Reader, which allows anyone t
view, navigate, and print documents in the Adobe Portable Document Format (PDF). See
http://www.adobe.com for information about obtaining a free copy of Acrobat Reader and for information on
supported platforms.

The documentation available in Adobe Acrobat format is on the Oracle Rdb Documentation CD—ROM. Click
on the welcome.pdf file in the top level directory to begin browsing the Oracle Rdb and related products
documentation.

Also included with this set of PDF manuals is a master index built using Adobe Acrobat Catalog. You will
need Adobe Acrobat Reader with Search capability to utilize this master index.

4.3.2 Documentation in HTML format

The documentation available in HTML format is on the Oracle Rdb Documentation CD—-ROM. Click on the
introductory page, welcome.htm, in the top level directory to begin viewing the Oracle Rdb and related
product documentation.

4.4 Documentation for This Release

The following documents have been updated for this release but are not included on the Oracle Rdb
Documentation CD—ROM:

* Oracle Rdb Release Notes

« Before You Install Oracle Rdb letter (cover_letter.txt)

« Oracle Rdb Installation and Configuration Guide (A90407-01)

» Oracle Rdb Oracle SQL/Services Release 7.1.5 Release Notes

« Oracle Rdb Oracle SQL/Services Release 7.1.5 Installation Guide (A90406-01)

These documents can be found in the Documentation directory on the Oracle Rdb Server software CD-ROI
The release notes can also be found in SYS$SHELP after installation.

The following table lists the manuals available on the Oracle Rdb Documentation CD-ROM (part number
A90838-01), the part number for each manual, if the manual is available in PDF format, and if the manual is
available in HTML format. Select either the welcome.htm or welcome.pdf file in the top level directory to
begin viewing the Oracle Rdb and related products documentation.

Table 4-1 Oracle Rdb Documentation

Part Title PDF HTML
Number Format Format
AQ0804-01 ;)rlacle Rdb New and Changed Features for Oracle Rdb, Rel%aesse yes
Oracle Rdb Oracle SQL/Services Server Release 7.1.5
A90405-01 Configuration Guide, Release 7.1 yes yes
A41741-1 Oracle Rdb7 for OpenVMS Oracle RMU Reference Manual, ves yes
Release 7.0
A4T7579-1 Oracle Rdb7 SQL Reference Manual, Volumes 1, 2, and 3, ves yes
Release 7.0
A40827-1 |Oracle Rdb7 Introduction to SQL, Release 7.0 yes yes
A42867-1 |Oracle Rdb7 Guide to SQL Programming, Release 7.0 yes yes
A41749-1 ?Bacle Rdb7 Guide to Database Design and Definition, Rele %/Sé% yes
A41748-1 |Oracle Rdb Guide to Database Maintenance, Release 7.0 |yes yes
_ Oracle Rdb7 Guide to Database Performance and Tuning,
A4LTAT-1 Volumes 1 and 2, Release 7.0 yes yes
A40826-1 Oracle Rdb for OpenVMS Guide to Distributed Transactlons,yes yes
Release 6.1
A41981-1 Oracle Rdb7 Guide to Using Oracle SQL/Services Client AP yes yes
Release 7.0
Table 4-2 Oracle Rdb Web Agent Documentation
Part Title PDF HTML
Number Format Format

n/a yes yes

Oracle Rdb Web Agent Guide to Using Rdb Web Agent,
Release 3.0

Table 4-3 SQL*Net for Rdb Documentation

Part Title PDF HTML
Number Format Format
A59211-01 |Oracle Rdb Guide to SQL*Net for Rdb7, Release 1.0.2 yes yes
_~4 |Oracle Rdb A Comparison of SQL Dialects for Oracle and Oracle
AS3248-01 Rdb, Release 1.0 yes yes
Table 4-4 Hot Standby Documentation
Part Title PDF HTML
Number Format Format
A42860-1 Oracle Rdb and Oracle CODASYL DBMS Guide to Hot Stan :i/l:é% ves
Databases, Release 7.0
Table 4-5 Replication Option for Rdb
Part Number Title PDF Format|{HTML Format
A49000-1 |Replication Option for Rdb Handbook, Release 7.0 yes no
A49001-1 |Replication Option for Rdb Installation Guide, Release 7y@s no
n/a Replication Option for Rdb Release Notes, Release 7.0)0es no
n/a Replication Option for Rdb Release Notes, Release 7.0/§es no
Table 4-6 Oracle CDD/Repository Documentation
Part Title PDF HTML
Number Format Format
_. |Oracle CDD/Repository Using Oracle CDD/Repository on
A40174-1 OpenVMS Systems, Release 7.0 yes no
A31157-1 |Oracle CDD/Repository User's Guide Supplement, Release ¢y&s no
A24878-1 |Oracle CDD/Repository CDO Reference Manual, Release 5.(yes no
A24879-2 |Oracle CDD/Repository Architecture Manual, Release 5.0 |yes no
A24846-2 |Oracle CDD/Repository Callable Interface Manual, Release %y@s no
AD48AT—2 ggacle CDD/Repository Information Model Volume 1, Releas§3/es o
A24848-1 E?:)acle CDD/Repository Information Model Volume 2, Releas)e/es no
Table 4-7 Oracle Expert for Rdb Documentation
Part Title PDF HTML
Number Format Format
_. |Oracle Expert for Rdb Getting Started with Oracle Expert fof
A32404-1 Rdb, Release 3.0 yes no

A32402-1 Oracle Expert for Rdb Character—Cell Interface Reference ves no
Manual, Release 3.0
A32403-1 |Oracle Expert for Rdb User's Guide, Release 3.0 yes no
n/a Oracle Expert for Rdb Power User's Guide, Release 3.0 |yes no
Table 4-8 Oracle Trace for Rdb Documentation
Part Number Title PDF Format|HTML Format
A38160-1 |Oracle Trace Getting Started, Release 2.2 yes no
A38159-1 |Oracle Trace Collector User's Guide, Release 2.2 yes no
A38162-1 |Oracle Trace Monitor User's Guide, Release 2.2 yes no
A38161-1 |Oracle Trace Reporter User's Guide, Release 2.2 yes no
A38163-1 |Before You Install Oracle Trace Version 2.2 on OpenVM$es no
A38158-1 |Oracle Trace Installation Guide, Release 2.2 yes no
Table 4-9 Oracle Rally Documentation
Part Title PDF HTML
Number Format Format
A44323-1 |[Oracle Rally Introduction to Oracle Rally, Release 7.0 yes no
A44326-1 [Oracle Rally Command Reference Manual, Release 7.0 |yes no
A44325-1 [Oracle Rally Using Oracle Rally Applications, Release 7.0 [yes no
A44321-1 [Oracle Rally Developing Oracle Rally Applications, Releaseyk8 no
A44327-1 Oracle Rally Installing Oracle Rally for OpenVMS Systems, ves o
Release 7.0
A44328-1 Read Before Installing Oracle Rally Release 7.0 on OpenVI“/;%S o
VAX Systems
A44329-1 Read Before Installing Oracle Rally Release 7.0 on OpenVI\'/)I/%S o
Alpha Systems

The introductory page, welcome.htm, is located in the top level directory on the Oracle Rdb Documentation
CD-ROM. You cannot access the Oracle Rdb Release Notes from this introductory page. See Section 4.4 f
information on accessing the release notes.

The following sections provide information about changes or other information that was missing or changed
in the Oracle Rdb documentation for release 7.0 and earlier releases.

4.5 Updated Documentation for Oracle Rdb-related
Products

Table 4-1 lists the manuals available on the Oracle Rdb Documentation CD-ROM (part number
A90838-01). The following are updates to this table:

« Oracle CDD/Repository is currently shipping release 7.0.1 and the release notes, Installing Oracle
CDD/Repository (part number A70148-01), and the CDO Reference Manual (part number
A70149-01) have been updated along with the CDO help file. You can order these updated books a
they are available on the software CD—ROM when you order the 7.0.1 software.

« The Oracle CDD/Repository User's Guide Supplement (part number A31157-1) for release 6.1 is
superseded by the Using Oracle CDD/Repository on OpenVMS Systems (part number A40174-1) fc

release 7.0.

4.6 New and Changed Features in Oracle Rdb Release
7.1

This section provides information about late—breaking new features or information that is missing or change
since the Oracle Rdb New and Changed Features for Oracle Rdb manual was published.

4.6.1 PERSONA is Supported in Oracle SQL/Services

In the "New and Changed Features for Oracle Rdb" Manual under the section "ALTER DATABASE
Statement" is a note stating that impersonation is not supported in Oracle SQL/Services. This is incorrect.
There was a problem in the first release of Oracle Rdb 7.1 (7.1.0) whereby impersonation through Oracle
SQL/Services failed. This problem is resolved in Oracle Rdb Release 7.1.0.1.

4.6.2 NEXTVAL and CURRVAL Pseudocolumns Can Be
Delimited Identifiers

The Oracle Rdb New and Changed Features for Oracle Rdb manual describes SEQUENCES but does not
mention that the special pseudocolumns NEXTVAL and CURRVAL can be delimited. All uppercase and
lowercase variations of these keywords are accepted and assumed to be equivalent to these uppercase
keywords.

The following example shows that any case is accepted:

SQL> set dialect 'sql92";

SQL> create sequence dept_id;

SQL> select dept_id.nextval from rdb$database;
1

1 row selected

SQL> select "DEPT_ID".currval from rdb$database;
1

1 row selected

SQL> select "DEPT_ID"."CURRVAL" from rdb$database;
1

1 row selected

SQL> select "DEPT_ID"."nextval" from rdb$database;
2

1 row selected

SQL> select "DEPT_ID"."CuRrVaL" from rdb$database;
2

1 row selected

4.6.3 Only=select_list Qualifier for the RMU Dump After_Journal
Command

The Oracle Rdb New and Changed Features for Oracle Rdb manual documents the First=select_list and
Last=select_list qualifiers for the RMU Dump After_Journal command. Inadvertently missed was the
Only=select_list qualifier.

The First, Last, and Only qualifiers have been added because the Start and End qualifiers are difficult to use
since users seldom know, nor can they determine, the AlJ record number in advance of using the RMU Dun
After_Journal command.

The select_list clause of these qualifiers consists of a list of one or more of the following keywords:

* TSN=tsn
Specifies the first, last, or specific TSN in the AlJ journal using the standard [n:]m TSN format.
 TID=tid
Specifies the first, last or specific TID in the AlJ journal.
* RECORD-=record
Specifies the first or last record in the AlJ journal. This is the same as the existing Start and End
qualifiers (which are still supported, but deprecated). This keyword cannot be used with the Only
qualifier.
* BLOCK=block#
Specifies the first or last block in the AlJ journal. This keyword cannot be used with the Only
qualifier.
e TIME=date_time
Specifies the first or last date/time in the AlJ journal using the standard date/time format. This
keyword cannot be used with the Only qualifier.

The First, Last, and Only qualifiers are optional. You may specify any or none of them.

The keywords specified for the First qualifier can differ from the keywords specified for the other qualifiers.
For example, to start the dump from the fifth block of the AlJ journal, you would use the following command:
RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=5) MF_PERSONNEL.AIJ

To start the dump from block 100 or TSN 52, whichever occurs first, you would use the following command:
RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=100,TSN=0:52) MF_PERSONNEL.AIJ

When multiple keywords are specified for a qualifier, the first condition being encountered activates the
gualifier. In the preceding example, the dump starts when either block 100 or TSN 52 is encountered.

Be careful when searching for TSNs or TIDs as they are not ordered in the AlJ journal. For example, if you
want to search for a specific TSN, use the Only qualifier and not the First and Last qualifiers. For example,
assume the AlJ journal contains records for TSN 150, 170, and 160 (in that order). If you specify the
First=TSN=160 and Last=TSN=160 qualifiers, nothing will be dumped because TSN 170 will match the
Last=TSN=160 criteria.

4.7 Oracle Rdb7 and Oracle CODASYL DBMS Guide
to Hot Standby Databases

This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 and Oracle
CODASYL DBMS Guide to Hot Standby Databases.

4.7.1 Restrictions Lifted on After-Image Journal Files

The Hot Standby software has been enhanced regarding how it handles after-image journal files. Section
4.2.4 in the Oracle Rdb and Oracle CODASYL DBMS Guide to Hot Standby Databases states the following
information:

If an after—-image journal switchover operation is suspended when
replication operations are occurring, you must back up one or more of
the modified after—image journals to add a new journal file.

This restriction has been removed. Now, you can add journal files or use the emergency AlJ feature of Orac
Rdb release 7.0 to automatically add a new journal file. Note the following distinctions between adding an A
file and adding an emergency AlJ file:

* You can add an AlJ file to the master database and it will be replicated on the standby database. If
replication operations are active, the AlJ file is created on the standby database immediately. If
replication operations are not active, the AlJ file is created on the standby database when replicatior
operations are restarted.

» You can add emergency AlJ files anytime. If replication operations are active, the emergency AlJ file
is created on the standby database immediately. However, because emergency AlJ files are not
journaled, starting replication after you create an emergency AlJ will fail. You cannot start replication
operations because the Hot Standby software detects a mismatch in the number of after-image jour
files on the master compared to the standby database.

If an emergency AlJ file is created on the master database when replication operations are not active
you must perform a master database backup and then restore the backup on the standby database.
Otherwise, an AIJSIGNATURE error results.

4.7.2 Changes to RMU Replicate After_Journal ... Buffer
Command

The behavior of the RMU Replicate After_Journal ... Buffers command has been changed. The Buffers
qualifier may be used with either the Configure option or the Start option.

When using local buffers, the AlJ Log Roll-forward Server will use a minimum of 4096 buffers. The value
provided to the Buffers qualifier will be accepted but ignored if it is less than 4096. In addition, further
parameters will be checked and the number of buffers may be increased if the resulting calculations are
greater than the number of buffers specified by the Buffers qualifier. If the database is configured to use mol
than 4096 AlJ Request Blocks (ARBS), then the number of buffers may be increased to the number of ARB:
configured for the database. The LRS ensures that there are at least 10 buffers for every possible storage a
in the database. Thus if the total number of storage areas (both used and reserved) multiplied by 10 results
greater number of buffers, then that number will be used.

When global buffers are used, the number of buffers used by the AlJ Log Roll-forward Server is determinec
as follows:

« If the Buffers qualifier is omitted and the Online qualifier is specified, then the number of buffers will
default to the previously configured value, if any, or 256, whichever is larger.

« If the Buffers qualifier is omitted and the Online qualifier is not specified or the Noonline quelifier is
specified, then the number of buffers will default to the maximum number of global buffers allowed
per user ("USER LIMIT"), or 256, whichever is larger.

« If the Buffers qualifier is specified then that value must be at least 256, and it may not be greater thal
the maximum number of global buffers allowed per user ("USER LIMIT").

The Buffer qualifier now enforces a minimum of 256 buffers for the AlJ Log Roll-forward Server. The
maximum number of buffers allowed is still 524288 buffers.

4.7.3 Unnecessary Command in the Hot Standby Documentation

There is an unnecessary command documented in the Oracle Rdb and Oracle CODASYL DBMS Guide to
Hot Standby Databases manual. The documentation (in Section 2.12 "Step 10: Specify the Network Transp
Protocol") says that to use TCP/IP as the network protocol, you must issue the following commands:

$ CONFIG UCX AIJSERVER OBJECT

$ UCX SET SERVICE RDMAIJSRV
/PORT=n

/USER_NAME=RDMAIJSERVER
/PROCESS_NAME=RDMAIJSERVER
[FILE=SYS$SYSTEM:rdmaijserver_ucx.com
/LIMIT=nn

The first of these commands ($ CONFIG UCX AIJSERVER OBJECT) is unnecessary. You can safely
disregard the first line when setting up to use TCP/IP with Hot Standby.

The documentation will be corrected in a future release of Oracle Rdb.

4.7.4 Change in the Way RDMAIJ Server is Set Up in UCX

Starting with Oracle Rdb Release 7.0.2.1, the RDMAIJ image became a varianted image. Therefore, the
information in Section 2.12, "Step 10: Specify the Network Transport Protocol," of the Oracle Rdb7 and
Oracle CODASYL DBMS Guide to Hot Standby Databases has become outdated with regard to setting up t
RDMAIJSERVER object when using UCX as the network transport protocol. The UCX SET SERVICE
command is now similar to the following:

$ UCX SET SERVICE RDMAIJ -
/PORT=port_number -
/USER_NAME=RDMAIJ -
/PROCESS_NAME=RDMAIJ -
[FILE=SYS$SYSTEM:RDMAIJSERVER.com -
/LIMIT=Ilimit

For Oracle Rdb multiversion, the UCX SET SERVICE command is similar to the following:

$ UCX SET SERVICE RDMAIJ70 -
/PORT=port_number —
/USER_NAME=RDMAIJ70 -
/PROCESS_NAME=RDMAIJ70 -
/FILE=SYS$SYSTEM:RDMAIJSERVER70.com -
/LIMIT=limit

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn) and places a file called
RDMAIJSERVER(nN).COM in SYS$SYSTEM. The RMONSTART(nn).COM command procedure will try

to enable a service called RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a varianted image does not impact installations using DECNet since the
correct DECNet object is created during the Oracle Rdb installation.

4.7.5 CREATE INDEX Operation Supported for Hot Standby

On Page 1-13 of the Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases, the add
new index operation is incorrectly listed as an offline operation not supported by Hot Standby. The CREATE
INDEX operation is now fully supported by Hot Standby, as long as the transaction does not span all availak
AlJ journals, including emergency AlJ journals.

4.8 Oracle Rdb7 for OpenVMS Installation and
Configuration Guide

This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 for OpenVMS
Installation and Configuration Guide.

4.8.1 Suggestion to Increase GH_RSRVPGCNT Removed

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a section titled "Installing
Oracle Rdb Images as Resident on OpenVMS Alpha". This section includes information about increasing th
value of the OpenVMS system parameter GH_RSRVPGCNT when you modify the RMONSTART.COM or
SQL$STARTUP.COM procedures to install Oracle Rdb images with the Resident qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only required if the RMONSTART.COM or
SQL$STARTUP.COM procedures have been manually modified to install Oracle Rdb images with the
Resident qualifier. Furthermore, if the RMONSTART.COM and SQL$STARTUP.COM procedures are
executed during the system startup procedure (directly from SYSTARTUP_VMS.COM, for example), there i
no need to modify the GH_RSRVPGCNT parameter.

Oracle Corporation recommends that you do not modify the value of the GH_RSRVPGCNT system
parameter unless it is absolutely required. Some versions of OpenVMS on some hardware platforms require
GH_RSRVPGCNT to be a value of zero in order to ensure the highest level of system performance.

4.8.2 Prerequisite Software

In addition to the software listed in the Oracle Rdb Installation and Configuration Guide and at the url
http://lwww.oracle.com/rdb/product_info/index.html, note that the MACRO compiler and linker from Compagq
Computer Corporation are required software in order to install Oracle Rdb on your OpenVMS Alpha system.

4.8.3 Defining the RDBSERVER Logical Name

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and Configuration Guide provide
the following examples for defining the RDBSERVER logical name: $ DEFINE RDBSERVER
SYS$SYSTEM:RDBSERVER70.EXE

and $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVERG61.EXE

These definitions are inconsistent with other command procedures that attempt to reference the
RDBSERVERxx.EXE image. Below is one example where the RDBSERVER.COM procedure references
SYS$COMMON:<SYSEXE> and SYS$COMMON:[SYSEXE] rather than SYS$SYSTEM.

$ if .not. -
((f$locate ("SYS$SCOMMON:<SYSEXE>"rdbserver_image) .ne. log_len) .or. -
(f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))
then
say ""rdbserver_image' is not found in SYS$COMMON:<SYSEXE>"
say "RDBSERVER logical is "rdbserver_image™
exit
endif

Hh B PP

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide, the image would not be found.

The correct definition of the logical name is as follows: DEFINE RDBSERVER
SYS$COMMON:<SYSEXE>RDBSERVER70.EXE

and DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVERG61.EXE

4.9 Guide to Database Design and Definition

This section provides information that is missing from or changed in release 7.0 of the Oracle Rdb7 Guide tc
Database Design and Definition.

4.9.1 Lock Timeout Interval Logical Incorrect

On Page 7-31 of Section 7.4.8 in the Oracle Rdb7 Guide to Database Design and Definition, the
RDM$BIND_LOCK_TIMEOUT logical name is referenced incorrectly. The correct logical name is
RDM$BIND_LOCK_TIMEOUT_INTERVAL.

The Oracle Rdb7 Guide to Database Design and Definition will be corrected in a future release.

4.9.2 Example 4-13 and Example 4-14 Are Incorrect

Example 4-13 showing vertical partitioning, and Example 4-14, showing vertical and horizontal partitioning,
are incorrect. They should appear as follows:

Example 4-13:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP

cont> FOR EMPLOYEES

cont> ENABLE COMPRESSION

cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,

cont> MIDDLE_INITIAL, STATUS_CODE)

cont> DISABLE COMPRESSION

cont> IN ACTIVE_AREA

cont> STORE COLUMNS (ADDRESS_DATA 1, ADDRESS_DATA 2, CITY,
cont> STATE, POSTAL_CODE)

cont> IN INACTIVE_AREA

cont> STORE IN OTHER_AREA,;

Example 4-14:

SQL> CREATE STORAGE MAP EMPLOYEES 1 MAP2
cont> FOR EMP2
cont> STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,

cont> MIDDLE_INITIAL, STATUS_CODE)

cont> USING (EMPLOYEE_ID)

cont> IN ACTIVE_AREA_A WITH LIMIT OF ('00399")
cont> IN ACTIVE_AREA_B WITH LIMIT OF ('00699")
cont> OTHERWISE IN ACTIVE_AREA C

cont> STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA 2, CITY,
cont> STATE, POSTAL_CODE)

cont> USING (EMPLOYEE_ID)

cont> IN INACTIVE_AREA_A WITH LIMIT OF ('00399")
cont> IN INACTIVE_AREA_B WITH LIMIT OF ('00699")
cont> OTHERWISE IN INACTIVE_AREA _C

cont> STORE IN OTHER_AREA;

4.10 Oracle Rdb7 SQL Reference Manual

This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7 SQL Referenc
Manual.

4.10.1 Clarification of the DDLDONOTMIX Error Message

The ALTER DATABASE statement performs two classes of functions:

1. Changing the database root structures in the .RDB file
2. Modifying the system metadata in the RDB$SYSTEM storage area.

The first class of changes do not require a transaction to be active. However, the second class requires that
transaction be active. Oracle Rdb does not currently support the mixing of these two classes of ALTER
DATABASE clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the {SQL-syntax}
clause can not be used with some ALTER DATABASE clauses" is displayed, and the ALTER DATABASE
statement fails. For example:

SQL> alter database filename MF_PERSONNEL

cont> dictionary is not used

cont> add storage area JOB_EXTRA filename JOB_EXTRA,;
%RDB-F-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)

-RDMS-E-DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses may be mixed with each other, but may not appear with other clauses such as ADD
STORAGE AREA or ADD CACHE:

* DICTIONARY IS [NOT] REQUIRED

* DICTIONARY IS NOT USED

* MULTISCHEMA IS { ON | OFF }

* CARDINALITY COLLECTION IS { ENABLED | DISABLED }
* METADATA CHANGES ARE { ENABLED | DISABLED }

* WORKLOAD COLLECTION IS { ENABLED | DISABLED }

* SYNONYMS ARE ENABLED

* SECURITY CHECKING IS { INTERNAL | EXTERNAL }

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two statements,
one for each class of actions.

SQL> alter database filename MF_PERSONNEL

cont> dictionary is not used;

SQL> alter database filename MF_PERSONNEL

cont> add storage area JOB_EXTRA filename JOB_EXTRA,

4.10.2 Node Specification Allowed on Root FILENAME Clauses

In previous releases of the Oracle Rdb SQL Reference Manual, it was not made clear that a node specificat
may only be specified for the root FILENAME clause of the ALTER DATABASE, CREATE DATABASE,
EXPORT DATABASE, and IMPORT DATABASE statements.

This means that the directory or file specification specified with the following clauses can only be a device,
directory, file name, and file type:

* LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY JOURNAL, ADD CACHE,
and CREATE CACHE clauses

* SNAPSHOT FILENAME clause

* FILENAME and SNAPSHOT FILENAME clauses of the ADD STORAGE AREA and CREATE
STORAGE AREA clauses

» BACKUP FILENAME clause of the JOURNAL IS ENABLED, ADD JOURNAL, and ALTER
JOURNAL clauses

* BACKUP SERVER and CACHE FILENAME clauses of the JOURNAL IS ENABLED clause

* FILENAME clause of the ADD JOURNAL clause

Usage notes reflecting this restriction for these clauses will appear in a future release of the Oracle Rdb SQ!
Reference Manual.

4.10.3 Incorrect Syntax Shown for Routine—Clause of the
CREATE MODULE Statement

The Oracle Rdb7 SQL Reference Manual incorrectly showed that a simple—statement could be specified for
the routine—clause of the CREATE MODULE statement. You can specify a compound-statement and
compound-use-statement for the routine—clause only of the CREATE MODULE statement.

This correction appears in the Oracle Rdb New and Changed Features for Oracle Rdb manual and will appe
in a future release of the Oracle Rdb7 SQL Reference Manual.

4.10.4 Omitted SET Statements

The following SET statements and language options were omitted from the Oracle Rdb7 SQL Reference
Manual.

4.10.4.1 QUIET COMMIT

The following QUIET COMMIT options were omitted from the documentation:

Interactive and dynamic SET QUIET COMMIT statement

SQL

Module Header QUIET COMMIT option

SQL Module Language /QUIET_COMMIT and /NOQUIET_COMMIT qualifiers

SQL Precompiler /SQLOPTIONS=QUIET_COMMIT and
/SQLOPTIONS=NOQUIET_COMMIT options

These options control the behavior of the COMMIT and ROLLBACK statements in cases where there is no
active transaction.

By default, if there is no active transaction, SQL will raise an error when COMMIT or ROLLBACK is
executed. This default is retained for backward compatibility for applications that wish to detect the situation
If QUIET COMMIT is set to ON, a COMMIT or ROLLBACK executes successfully when there is no active
transaction.

Within a compound statement, the COMMIT and ROLLBACK statements are ignored.

In interactive or dynamic SQL, the SET statement can be used to disable or enable error reporting for
COMMIT and ROLLBACK when no transaction is active. The parameter to the SET command is a string

literal or host variable containing the keyword ON or OFF. For example:

SQL> COMMIT;

%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;

%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT 'on’;

SQL> ROLLBACK;

SQL> COMMIT;

SQL> SET QUIET COMMIT 'off’;

SQL> COMMIT;

%SQL-F-NO_TXNOUT, No transaction outstanding

In the SQL module language or precompiler header, the QUIET COMMIT option can be used to disable or
enable error reporting for COMMIT and ROLLBACK when no transaction is active. The keyword ON or
OFF must be used to enable or disable this feature. The following example enables QUIET COMMIT so tha
no error is reported if a COMMIT is executed when no transaction is active:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

4.10.4.2 COMPOUND TRANSACTIONS

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic SQL) and the module
header option, COMPOUND TRANSACTIONS, controls the SQL behavior for starting default transactions
for compound statements.

By default, if there is no current transaction, SQL will start a transaction before executing a compound
statement or stored procedure. However, this may conflict with the actions within the procedure or may start
transaction for no reason if the procedure body does not perform database access. This default is retained f
backward compatibility for applications which may expect a transaction to be started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, SQL starts a transaction before executing the
procedure. Otherwise, if it is set to INTERNAL, it allows the procedure to start a transaction as required by
the procedure execution.

In interactive or dynamic SQL, the following SET command can be used to disable or enable transactions
starting by the SQL interface. The parameter to the SET command is a string literal or host variable
containing the keyword 'INTERNAL' or 'EXTERNAL'".

SQL> SET COMPOUND TRANSACTIONS ‘internal’;
SQL> CALL START_TXN_AND_COMMIT ();

SQL> SET COMPOUND TRANSACTIONS ‘external’;
SQL> CALL UPDATE_EMPLOYEES (...):

In the SQL module language or precompiler header, the COMPOUND TRANSACTIONS option can be usec
to disable or enable starting a transaction for procedures. The keyword INTERNAL or EXTERNAL must be
used to enable or disable this feature.

MODULE TXN_CONTROL

LANGUAGE BASIC

PARAMETER COLONS

COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN

SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN

COMMIT;

END;

4.10.5 Size Limit for Indexes with Keys Using Collating
Sequences

When a column is defined with a collating sequence, the index key is specially encoded to incorporate the
correct collating information. This special encoding takes more space than keys encoded for ASCII (which is
the default when no collating sequence is used). Therefore, the encoded string uses more than the customa
one byte per character of space within the index. This is true for all versions of Oracle Rdb which support
collating sequences.

For all collating sequences, except Norwegian, the space required is approximately 9 bytes for every 8
characters. Therefore, a CHAR (24) column will require approximately 27 bytes to store. For Norwegian
collating sequences, the space required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when calculating the size of an index
key against the limit of 255 bytes. Suppose a column defined with a collating sequence of GERMAN was
used in an index. The length of that column is limited to a maximum of 225 characters because the key will |
encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a German collating sequenc
and included in an index, exceeds the index size limit of 255 bytes, even though the column is defined as le:
than 255 characters in length.

SQL> CREATE DATABASE

cont> FILENAME 'testdb.rdb’

cont> COLLATING SEQUENCE GERMAN GERMAN,;
SQL> CREATE TABLE employee_info

cont> (emp_name CHAR (233));

SQL> CREATE INDEX emp_name_idx

cont> ON employee_info (

cont> emp_name ASC)

cont> TYPE IS SORTED;
%RDB-E-NO_META_UPDATE, metadata update failed
—-RDMS-F-INDTOOBIG, requested index is too big

4.10.6 Clarification of SET FLAGS Option
DATABASE PARAMETERS

The Oracle Rdb7 SQL Reference Manual described the option DATABASE_PARAMETERS in table 7-6 in
the SET FLAGS section. However, this keyword generates output only during ATTACH to the database

which happens prior to the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMSS$SET_FLAGS logical name which provides
similar functionality.

$ define RDMSS$SET_FLAGS "database_parameters"

sql

SQL> Attach 'File db$:scratch’;

ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)

0000 (00000) RDB$K_DPB_VERSION2

0001 (00001) RDB$K_FACILITY_ALL

0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"

0040 (00064) RDB$K_FACILITY_ALL

0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)

0045 (00069) RDB$K_FACILITY_ALL

0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)

004A (00074) RDB$K_FACILITY_RDB_VMS

004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)

RDMS$BIND_WORK_FILE = "DISK:[DIRIRDMSTTBL$UEOU3LQORV2.TMP;" (Visible = 0)
SQL> Exit

DETACH #1

4.10.7 Incorrect Syntax for CREATE STORAGE MAP Statement

The main diagram of the CREATE STORAGE MAP statement incorrectly shows the partition—clause as
required syntax. The partition—clause is not a required clause.

The partition—clause diagram of the CREATE STORAGE MAP statement incorrectly indicated that the
STORE keyword was not repeated. When creating a vertically partitioned table you must repeat the STORE
keyword for each partition.

FORMAT

partition-clause =

STORE ¢ store-clause
L> columns-clause —J L> store-attributes —J

-

When creating a vertical record partition, the last STORE clause cannot contain the COLUMNS clause. If yc
attempt to include the COLUMNS clause on the last STORE clause, you will an error similar to the following

%SQL-F-VRP_ILLEGAL_STO, Storage Map "EMPLOYEES_MAP2" specified STORE COLUMNS
after a STORE

The following example shows the correct syntax for creating a storage map with horizontal and vertical
partitions:

SQL> CREATE STORAGE MAP employees_map?2

cont> FOR employees2

cont> ——

cont> —— Store the primary information horizontally partitioned

cont> —— across the areas EMPIDS_LOW, EMPIDS_MID and EMPIDS_OVER.
cont> —— Disable compression because these columns are accessed often.
cont> ——

cont> STORE

cont> COLUMNS (employee_id, last_name,
cont> first_name, middle_initial)

cont> VERTICAL PARTITION volatile_columns
cont> DISABLE COMPRESSION

cont> USING (employee_id)

cont> IN empids_low

cont> (PARTITION id_low)

cont> WITH LIMIT OF ("00200")
cont> IN empids_mid

cont> (PARTITION id_mid)

cont> WITH LIMIT OF ('00400")
cont> OTHERWISE IN empids_over
cont> (partition id_ovr)

cont> ——

cont> —— Place all the address information in EMP_INFO.

cont> —— Make sure these character columns are compressed.
cont> ——

cont> STORE

cont> COLUMNS (address_data_1, address_data_2, city, state,

cont> postal_code)

cont> ENABLE COMPRESSION

cont> IN emp_info

cont> ——

cont> —— The remaining columns get written randomly over these area.
cont> ——

cont> STORE
cont> ENABLE COMPRESSION
cont> RANDOMLY ACROSS (salary_history, jobs);

Refer to Oracle Rdb New and Changed Features for Oracle Rdb for the full syntax of the CREATE
STORAGE MAP statement. The Oracle Rdb7 SQL Reference Manual will be corrected in a future release.

4.10.8 Use of SQL_SQLCA Include File Intended for Host
Language File

Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are intended for use with the host
language files only. That is, only *.C should be including that file. Precompiled files (*.SC files) should use
the EXEC SQL INCLUDE SQLCA embedded SQL command in the declaration section of the module. In thi
way the precompiler can properly define the structure to be used by the related SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the SQLCODE or SQLSTATE
variables which may be routine specific.

The following example shows this error:

#include <stdio.h>
#include <sql_sqglca.h>
struct SQLCA SQLCA,;

int main (void)

{

EXEC SQL EXECUTE IMMEDIATE “show version';

printf ("SQLCODE=%d\n", SQLCA.SQLCODE);

}

$ SQLPRE/CC issues the following error against this program:
%SQL-F-NOSQLCODE, Neither SQLCA, SQLCODE nor SQLSTATE were declared

The following example shows correct usage:

#include <stdio.h>
#include <sql_sqglca.h>
EXEC SQL INCLUDE SQLCA,

int main (void)
{
EXEC SQL EXECUTE IMMEDIATE “show version’;

printf (“SQLCODE=%d\n", SQLCA.SQLCODE);
}

4.10.9 Missing Information on Temporary Tables

The following information was inadvertently omitted from the Oracle Rdb7 SQL Reference Manual. (Should
be in the Usage Notes for CREATE TEMPORARY TABLE.)

Data for a temporary table is stored in virtual memory, not in a storage area. For journaling purposes, when
changes are made to the data in a temporary table such as updates or deletes, recovery space is required t
hold before images of deleted and updated rows. This recovery space also requires virtual memory and may
result in having to increase Page File Quota and Virtual Page Count on OpenVMS.

A recommended way to reduce memory usage when using temporary tables is to commit transactions whicl
modify temporary table data as soon as possible. Upon commit the additional copies of data are released ar
available for reuse by Oracle Rdb. This eliminates extra copies of data and therefore reduces virtual memor
usage.

See the Oracle Rdb7 Guide to Database Design and Definition for calculating memory usage for temporary
tables.

4.11 Oracle RMU Reference Manual, Release 7.0

This section provides information that is missing from or changed in V7.0 of the Oracle RMU Reference
Manual.

4.11.1 RMU Unload After_Journal Null Bit Vector Clarification

Each output record from the RMU /UNLOAD /AFTER_JOURNAL command includes a vector (array) of
bits. There is one bit for each field in the data record. If a null bit value is 1, the corresponding field is NULL;
if a null bit value is 0, the corresponding field is not NULL and contains an actual data value. The contents o
a data field that is NULL are not initialized and are not predictable.

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN indicates the number of valid
bits (and thus, the number of columns in the table). Any extra bits in the final byte of the vector after the fina
null bit are unused and the contents are unpredictable.

The following example C program demonstrates one possible way of reading and parsing a binary output fil
(including the null bit vector) from the RMU /UNLOAD /AFTER_JOURNAL command. This sample

program has been tested using Oracle Rdb V7.0.5 and higher and Compag C V6.2-009 on OpenVMS Alph,
V7.2-1. It is meant to be used as a template for writing your own program.

/* DATATYPES.C */

#include <stdio.h>
#include <descrip.h>
#include <starlet.h>
#include <string.h>

#pragma member_alignment __save
#pragma nomember_alignment

struct { /* Database key structure */
unsigned short Ino; /* line number */
unsigned int pno; /* page number */
unsigned short dbid; /* area number */

} dbkey;
typedef struct { /* Null bit vector with one bit for each column */
unsigned n_tinyint :1;
unsigned n_smallint :1;
unsigned n_integer :1;
unsigned n_bigint :1;
unsigned n_double :1;
unsigned n_real 1;
unsigned n_fixstr :1;
unsigned n_varstr :1;
} nbv_t;
struct { /* LogMiner output record structure for table DATATYPES */
char rdb$Im_action;
char rdb$Im_relation_name [31];
int rdb$Im_record_type;
short rdb$Im_data_len;
short rdb$Iim_nbv_len;
__int64 rdb$im_dbk;
__int64 rdb$lm_start_tad;
__int64 rdb$lm_commit_tad;
__int64 rdb$Im_tsn;

short rdb$lm_record_version;

char f_tinyint;

short f_smallint;

int f_integer;

__int64 f_bigint;

double f_double;

float f_real;

char f_fixstr[10];

short f_varstr_len; /*length of varchar */
char f_varstr[10]; /* data of varchar */
nbv_t nbv;

}Him;

#pragma member_alignment __restore

main ()
{ char timbuf [24];
struct dsc$descriptor_s dsc = {
23, DSCK_DTYPE_T, DSCK_CLASS_S, timbuf};
FILE *fp = fopen ("datatypes.dat”, "r", "ctx=hin");

memset (&timbuf, 0, sizeof(timbuf));

while (fread (&Im, sizeof(Im), 1, fp) !=0)
{
printf ("Action = %c\n", Im.rdb$lm_action);
printf ("Table = %.*s\n", sizeof(Im.rdb$lm_relation_name),
Im.rdb$Im_relation_name);
printf ("Type =%d\n", Im.rdb$Im_record_type);
printf ("Data Len =%d\n", Im.rdb$lm_data_len);
printf ("Null Bits = %d\n", Im.rdb$lm_nbv_len);

memcpy (&dbkey, &lm.rdb$im_dbk, sizeof(Im.rdb$Iim_dbk));
printf ("DBKEY = %d:%d:%d\n", dbkey.dbid,

dbkey.pno,

dbkey.Ino);

sys$asctim (0, &dsc, &m.rdb$im_start_tad, 0);
printf ("Start TAD = %s\n", timbuf);

sys$asctim (0, &dsc, &Im.rdb$Im_commit_tad, 0);
printf ("Commit TAD = %s\n", timbuf);

printf ("TSN =%Ld\n", Im.rdb$Im_tsn);
printf ("Version =%d\n", Im.rdb$lm_record_version);

if (Im.nbv.n_tinyint == 0)
printf ("f_tinyint = %d\n", Im.f_tinyint);
else printf ("f_tinyint = NULL\n");

if (Im.nbv.n_smallint == 0)
printf ("f_smallint = %d\n", Im.f_smallint);
else printf ("f_smallint = NULL\n");

if (Im.nbv.n_integer == 0)
printf ("f_integer = %d\n", Im.f_integer);
else printf ("f_integer = NULL\n");

if (Im.nbv.n_bigint == 0)
printf ("f_bigint = %Ld\n", Im.f_bigint);
else printf ("f_bigint = NULL\n");

if (Im.nbv.n_double == 0)
printf ("f_double = %f\n", Im.f_double);
else printf ("f_double = NULL\n");

if (Im.nbv.n_real == 0)
printf ("f_real = 9%f\n", Im.f_real);
else printf ("f_real = NULL\n");

if (Im.nbv.n_fixstr == 0)
printf ("f_fixstr = %.*s\n", sizeof (Im.f_fixstr),
Im.f_fixstr);
else printf ("f_fixstr = NULL\n");

if (Im.nbv.n_varstr == 0)
printf ("f_varstr =9%.*s\n", Im.f_varstr_len, Im.f_varstr);
else printf ("f_varstr = NULL\n");

printf ("\n");
}
}

Example sequence of commands to create a table, unload the data and display the contents with this progr:

SQL> ATTACH 'FILE MF_PERSONNEL';
SQL> CREATE TABLE DATATYPES (
F_TINYINT TINYINT
,F_SMALLINT SMALLINT
,F_INTEGER INTEGER
,F_BIGINT BIGINT
,F_DOUBLE DOUBLE PRECISION
,F_REAL REAL
,F_FIXSTR CHAR (10)
,F_VARSTR VARCHAR (10));
SQL> COMMIT;
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, 'THIS', NULL);
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, 'THAT";
SQL> COMMIT;
SQL> EXIT;
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ -
/ITABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT)
$ CC DATATYPES.C
$ LINK DATATYPES.OBJ
$ RUN DATATYPES.EXE

4.11.2 New Transaction_Mode Qualifier for Oracle RMU
Commands

A new qualifier, Transaction_Mode, has been added to the RMU Copy, Move_Area, Restore, and Restore
Only_Root commands. You can use this qualifier to set the allowable transaction modes for the database ro
file created by these commands. If you are not creating a root file as part of one of these commands, for
example, you are restoring an area, attempting to use this qualifier returns a CONFLSWIT error. This
qualifier is similar to the SET TRANSACTION MODE clause of the CREATE DATABASE command in
interactive SQL.

The primary use of this qualifier is when you restore a backup file (of the master database) to create a Hot
Standby database. Include the Transaction_Mode qualifier on the RMU Restore command when you create
the standby database (prior to starting replication operations). Because only read—only transactions are
allowed on the standby database, you should use the Transaction_Mode=Read_Only qualifier setting. This
setting prevents modifications to the standby database at all times, even when replication operations are no
active.

You can specify the following transaction modes for the Transaction_Mode qualifier:

All

Current

None
[No]Batch_Update
[No]Read_Only
[No]Exclusive
[No]Exclusive_Read
[No]Exclusive_Write
[No]Protected
[No]Protected_Read
[No]Protected_Write
[No]Shared
[No]Shared_Read
[No]Shared_Write

Note that [No] indicates that the value can be negated. For example, the NoExclusive_Write option indicate:
that exclusive write is not an allowable access mode for this database. If you specify the Shared, Exclusive,
Protected option, Oracle RMU assumes you are referring to both reading and writing in these modes. For
example, the Transaction_Mode=Shared option indicates that you want both Shared_Read and Shared_Wr
as transaction modes. No mode is enabled unless you add that mode to the list or you use the ALL option tc
enable all modes.

You cannot negate the following three options: All, which enables all transaction modes; None, which
disables all transaction modes; and Current, which enables all transaction modes that are set for the source
database. If you do not specify the Transaction_Mode qualifier, Oracle RMU uses the transaction modes
enabled for the source database.

You can list one qualifier that enables or disables a particular mode followed by another that does the
opposite. For example, Transaction_Mode=(NoShared_Write, Shared) is ambiguous because the first value
disables Shared_Write access while the second value enables Shared_Write access. Oracle RMU resolves
ambiguities by first enabling all modes that are enabled by the items in the Transaction_Mode list and then
disabling those modes that are disabled by items in the Transaction_Mode list. The order of items in the list
irrelevant. In the example discussed, Shared_Read is enabled and Shared_Write is disabled.

The following example shows how to set a newly restored database to allow read—only transactions only.
After Oracle RMU executes the command, the database is ready for you to start Hot Standby replication
operations.

$ RMU/RESTORE/TRANSACTION_MODE=READ_ONLY MF_PERSONNEL.RBF

4.11.3 RMU Server After_Journal Stop Command

If database replication is active and you attempt to stop the database AlJ Log Server, Oracle Rdb returns ar
error. You must stop database replication before attempting to stop the server.

In addition, a new qualifier, Output=filename, has been added to the RMU Server After_Journal Stop
command. This optional qualifier allows you to specify the file where the operational log is to be created. Th
operational log records the transmission and receipt of network messages.

If you do not include a directory specification with the file name, the log file is created in the database root
file directory. It is invalid to include a node name as part of the file name specification.

Note that all Hot Standby bugcheck dumps are written to the corresponding bugcheck dump file; bugcheck
dumps are not written to the file you specify with the Output qualifier.

4.11.4 Incomplete Description of Protection Qualifier for RMU
Backup After_Journal Command

The description of the Protection Qualifier for the RMU Backup After_Journal command is incomplete in the
Oracle RMU Reference Manual for Digital UNIX. The complete description is as follows:

The Protection qualifier specifies the system file protection for the backup file produced by the RMU Backup
After_Journal command. If you do not specify the Protection qualifier, the default access permissions are
—TW—r————— for backups to disk or tape.

Tapes do not allow delete or execute access and the superuser account always has both read and write acc
to tapes. In addition, a more restrictive class accumulates the access rights of the less restrictive classes.

If you specify the Protection qualifier explicitly, the differences in access permissions applied for backups to

tape or disk as noted in the preceding paragraph are applied. Thus, if you specify Protection=(S,0,G:W,W:F
the access permissions on tape becomes rw—rw-r-.

4.11.5 RMU Extract Command Options Qualifier

A documentation error exists in the description of the Options=options-list qualifier of the RMU Extract
command. Currently, the documentation states that this qualifier is not applied to output created by the
Items=Volume qualifier. This is incorrect. Beginning with 6.1 of Oracle Rdb, the behavior of the
Options=options-list qualifier is applied to output created by the Items=Volume qualifier.

4.11.6 RDM$SNAP_QUIET_POINT Logical is Incorrect

On page 2-72 of the Oracle RMU Reference Manual, the reference to the RDM$SNAP_QUIET_POINT
logical is incorrect. The correct logical name is RDM$BIND _SNAP_QUIET _POINT.

4.11.7 Using Delta Time with RMU Show Statistics Command

Oracle RMU does not support the use of delta time. However, because the OpenVMS platform does, there |
workaround. You can specify delta time using the following syntax with the RMU Show Statistics command:

$ RMU/SHOW STATISTICS/OUTPUT=file-spec/UNTIL=""" f$cvtime ("+7:00") ' "
The +7:00 adds 7 hours to the current time.
You can also use "TOMORROW" and "TODAY+n".

This information will be added to the description of the Until qualifier of the RMU Show Statistics command
in a future release of the Oracle RMU Reference Manual.

4.12 Oracle Rdb7 Guide to Database Performance and
Tuning

The following section provides corrected, clarified, or omitted information for the Oracle Rdb7 Guide to
Database Performance and Tuning manual.

4.12.1 Dynamic OR Optimization Formats

In Table C-2 on Page C-7 of the Oracle Rdb7 Guide to Database Performance and Tuning, the dynamic O
optimization format is incorrectly documented as [I:h...]n. The correct formats for Oracle Rdb Release 7.0 ar
later are [(I:h)n] and [I:h,12:h2].

4.12.2 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table in Chapter 2 summarizing th
Oracle Rdb logical names. The information in the following table supersedes the entries for the
RDM$BIND _RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT logical names.

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of the .ruj file. The block
count value can be defined between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre—extend the .ruj files for each process using a
database. The block count value can be defined between 0 and 65535 with a default of 127.

4.12.3 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section in Chapter 3 that describe
the Performance Monitor Stall Messages screen. The section contains a list describing the "Waiting for"
messages. The description of the "waiting for client lock" message was missing from the list.

A client lock indicates that an Rdb metadata lock is in use. The term client indicates that Rdb is a client of th
Rdb locking services. The metadata locks are used to guarantee memory copies of the metadata (table, ind
and column definitions) are consistent with the on-disk versions.

The "waiting for client lock" message means the database user is requesting an incompatible locking mode.
For example, when trying to drop a table which is in use, the drop operation requests a PROTECTED WRIT
lock on the metadata object (such as a table) which is incompatible with the existing PROTECTED READ
lock currently used by others of the table.

These metadata locks consist of three longwords. The lock is displayed in text format first, followed by its
hexadecimal representation. The text version masks out non—printable characters with a dot (.).

The leftmost value seen in the hexadecimal output contains the id of the object. The id is described below fc
tables and views, routines, modules, storage map areas, and sequences.

« For tables and views, the id represents the unique value found in the RDBSRELATION_ID column o
the RDB$SRELATIONS system relation for the given table.

« For routines, the id represents the unique value found in the RDB$ROUTINE_ID column of the
RDB$ROUTINES system relation for the given routine.

« For modules, the id represents the unique value found in the RDBSMODULE_ID column of the
RDB$MODULES system relation for the given module.

 For storage map areas, the id represents the physical area id. The "waiting for client lock™ message
storage map areas is very rare. This may be raised for databases which have been converted from
versions prior to Oracle Rdb 5.1.

» For sequences, the id represents the unique value found in the RDB$SEQUENCE_ID column of the
RDB3$SEQUENCES system relation for the given sequence.

The next value displayed signifies the object type. The following table describes objects and their
hexadecimal type values.

Table 4-10 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value
Tables or views|00000004
Routines 00000006
Modules 00000015

Storage map |0000000E

Sequences 00000019
The last value in the hexadecimal output represents the lock type. The value 55 indicates this is a client lock

The following example shows a "waiting for client lock” message from a Stall Messages screen:

Process.ID Since...... Stall.reason........cccoeeeeeeiieeeennns Lock.ID.
46001105:2 10:40:46.38 — waiting for client '........ ' 000000190000000400000055

To determine the name of the referenced object given the lock ID the following queries can be used based c
the object type:

SQL>select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25;
SQL>select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12;
SQL>select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7;
SQL>select RDB$SEQUENCE_NAME from RDB$SEQUENCES where RDB$SEQUENCE_ID = 2;

Because the full client lock output is long, it may require more space than is allotted for the Stall.reason
column and therefore can be overwritten by the Lock.ID. column output.

For more detailed lock information, perform the following steps:

 Press the L option from the horizontal menu to display a menu of lock IDs.
« Select the desired lock ID.

4.12.4 RDMS$TTB_HASH_SIZE Logical Name

The logical name RDMS$TTB_HASH_SIZE sets the size of the hash table used for temporary tables. If the
logical name is not defined, Oracle Rdb uses a default value of 1249.

If you expect that temporary tables will be large (that is, 10K or more rows), use this logical name to adjust
the hash table size to avoid long hash chains. Set the value to approximately 1/4 of the expected maximum
number of rows for each temporary table. For example, if a temporary table will be populated with 100,000
rows, define this logical name to be 25000. If there are memory constraints on your system, you should defii
the logical name to be no higher than this value (1/4 of the expected maximum number of rows).

4.12.5 Error in Updating and Retrieving a Row by Dbkey
Example 3-22

Example 3-22 in Section 3.8.3 that shows how to update and retrieve a row by dbkey is incorrect. The
example should appear as follows:

SQL> ATTACH 'FILENAME MF_PERSONNEL.RDB,

SQL> ——

SQL> —- Declare host variables

SQL> —

SQL> DECLARE :hv_row INTEGER,; —— Row counter

SQL> DECLARE :hv_employee_id ID_DOM,; —— EMPLOYEE_ID field
SQL> DECLARE :hv_employee_id_ind SMALLINT; —— Null indicator variable
SQL> ——

SQL> DECLARE :hv_dbkey CHAR(8); —— DBKEY storage

SQL> DECLARE :hv_dbkey_ind SMALLINT; —— Null indicator variable
SQL> —-

SQL> DECLARE :hv_last name LAST_NAME_DOM,;

SQL> DECLARE :hv_new_address_data_1 ADDRESS DATA 1 DOM,;
SQL> ——

SQL> SET TRANSACTION READ WRITE;

SQL> BEGIN

cont> ——

cont> —— Set the search value for SELECT

cont> ——

cont> SET :hv_last_name = 'Ames’;

cont> ——

cont> —— Set the NEW_ADDRESS_DATA_1 value

cont> ——

cont> SET :hv_new_address_data_1 = '100 Broadway Ave.";
cont> END;

SQL> COMMIT;

SQL> —-

SQL> SET TRANSACTION READ ONLY;

SQL> BEGIN

cont> SELECT E.EMPLOYEE_ID, E.DBKEY

cont> INTO :hv_employee_id INDICATOR :hv_employee_id_ind,
cont> :hv_dbkey INDICATOR :hv_dbkey_ind

cont> FROM EMPLOYEES E

cont> WHERE E.LAST_NAME = :hv_last_name

cont> LIMIT TO 1 ROW;

cont> ——

cont> GET DIAGNOSTICS :hv_row = ROW_COUNT;

cont> END;

SQL> COMMIT;

SQL> —

SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE;
SQL> BEGIN

cont> IF (thv_row = 1) THEN

cont> BEGIN

cont> UPDATE EMPLOYEES E

cont> SET E.ADDRESS_DATA_1 =:hv_new_address_data_1
cont> WHERE E.DBKEY = :hv_dbkey;

cont> END;

cont> END IF;

cont> END;

SQL> COMMIT;

SQL> —

SQL> —- Display result of change

SQL> —-

SQL> SET TRANSACTION READ ONLY;

SQL> SELECT E.*

cont> FROM EMPLOYEES E

cont> WHERE E.DBKEY = :hv_dbkey;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL

ADDRESS_DATA 1 ADDRESS_DATA 2 CITY
STATE POSTAL_CODE SEX BIRTHDAY STATUS _CODE

00416 Ames Louie A

100 Broadway Ave. Alton

NH 03809 M 13-Apr-1941 1

1 row selected
SQL>

The new example will appear in a future publication of the Oracle Rdb7 Guide to Database Performance an
Tuning manual.

4.12.6 Error in Calculation of Sorted Index in Example 3-46

Example 3-46 in Section 3.9.5.1 shows the output when you use the RMU Analyze Indexes command and
specify the Option=Debug qualifier and the DEPARTMENTS_INDEX sorted index.

The description of the example did not include the 8 byte dbkey in the calculation of the sorted index. The
complete description is as follows:

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and uses 188 bytes of a possibl
430 bytes or the node record is 47 percent full. Note that due to index compression, the node size has
decreased in size from 422 bytes to 188 bytes and the percent fullness of the node records has dropped fro
98 to 47 percent. Also note that the used/avail value in the summary information at the end of the output doe
not include the index header and trailer information, which accounts for 32 bytes. This value is shown for
each node record in the detailed part of the output. The number of bytes used by the index is calculated as
follows: the sort key is 4 bytes plus a null byte for a total of 5 bytes. The prefix is 1 byte and the suffix is 1
byte. The prefix indicates the number of bytes in the preceding key that are the same and the suffix indicate
the number of bytes that are different from the preceding key. The dbkey pointer to the row is 8 bytes. There
are 26 data rows multiplied by 15 bytes for a total of 390 bytes. The 15 bytes include:

* 7 bytes for the sort key: length + null byte + prefix + suffix
« 8 bytes for the dbkey pointer to the row

Add 32 bytes for index header and trailer information for the index node to the 390 bytes for a total of 422
bytes used. Index compression reduces the number of bytes used to 188 bytes used.

The revised description will appear in a future publication of the Oracle Rdb7 Guide to Database Performan
and Tuning manual.

4.12.7 Documentation Error in Section C.7

The Oracle Rdb Guide to Database Performance And Tuning, Volume 2 contains an error in Section C.7 titl
Displaying Sort Statistics with the R Flag.

When describing the output from this debugging flag, bullet 9 states:

» Work File Alloc indicates how many work files were used in the sort operation. A zero (0) value
indicates that the sort was accomplished completely in memory.

This is incorrect, the statistics should be described as show below:

* Work File Alloc indicates how much space (in blocks) was allocated in the work files for this sort
operation. A zero (0) value indicates that the sort was accomplished completely in memory.

This error will be corrected in a future release of Oracle Rdb Guide to Database Performance And Tuning.

4.12.8 Missing Tables Descriptions for the RDBEXPERT

Collection Class

Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning describes the event—-based dat
tables in the formatted database for the Oracle Rdb PERFORMANCE and RDBEXPERT collection classes.
This section describes the missing tables for the RDBEXPERT collection class.

Table 4-11 shows the TRANS_TPB table.

Table 4-11 Columns for Table EPC$1_221 TRANS_TPB

Column Name Data Type Domain
COLLECTION_RECORD_ID|SMALLINT COLLECTION_RECORD_ID _DOMAIN
IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID _DOMAIN
CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
TIMESTAMP_POINT DATE VMS
CLIENT_PC INTEGER
STREAM_ID INTEGER
TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN
TPB VARCHAR(127)
TPB_STR_ID INTEGER STR_ID_DOMAIN

Table 4-12 shows the TRANS_TPB_ST table. An index is provided for this table. It is defined with column
STR_ID, duplicates are allowed, and the type is sorted.

Table 4-12 Columns for Table EPC$1_221 TRANS_TPB_ST

Column Name Data Type Domain
STR_ID INTEGER STR_ID_DOMAIN
SEGMENT_NUMBER|[SMALLINT SEGMENT_NUMBER_DOMAIN
STR_SEGMENT VARCHAR(128)

4.12.9 Missing Columns Descriptions for Tables in the
Formatted Database

Some of the columns were missing from the tables in Appendix B in the Oracle Rdb7 Guide to Database
Performance and Tuning. The complete table definitions are described in this section.

Table 4-13 shows the DATABASE table.

Table 4-13 Columns for Table EPC$1_221 DATABASE

Column Name Data Type Domain
COLLECTION_RECORD_ID |[SMALLINT COLLECTION_RECORD_ID_DOMAIN
IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN
CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
TIMESTAMP_POINT DATE VMS
CLIENT_PC INTEGER
STREAM_ID INTEGER
DB _NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN
IMAGE_FILE_NAME VARCHAR(255)
IMAGE_FILE_NAME_STR_ID [INTEGER STR_ID_DOMAIN

Table 4-14 shows the REQUEST_ACTUAL table.

Table 4-14 Columns for Table EPC$1_221 REQUEST_ACTUAL

Column Name Data Type Domain
COLLECTION_RECORD_ID |[SMALLINT COLLECTION_RECORD_ID_DOMAIN
IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN
CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
TIMESTAMP_START DATE VMS
TIMESTAMP_END DATE VMS
DBS_READS_ START INTEGER
DBS_WRITES_START INTEGER
RUJ_READS_START INTEGER
RUJ_WRITES_START INTEGER
AlJ_WRITES_START INTEGER
ROOT_READS_START INTEGER
ROOT_WRITES_START INTEGER

BUFFER_READS_START |[INTEGER
GET_VM_BYTES_START |INTEGER
FREE_VM_BYTES_START [INTEGER

LOCK_REQS_START INTEGER
REQ _NOT_QUEUED_START [INTEGER
REQ STALLS START INTEGER

REQ_DEADLOCKS_START ([INTEGER
PROM_DEADLOCKS_START (INTEGER
LOCK_RELS_START INTEGER
LOCK_STALL_TIME_START (INTEGER
D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER
D_LB_ALLOK_START INTEGER
D_LB_GBNEEDLOCK_START|INTEGER
D_LB_NEEDLOCK_START [INTEGER
D_LB_OLDVER_START INTEGER
D_GB_NEEDLOCK_START [INTEGER
D_GB_OLDVER_START INTEGER
D_NOTFOUND_IO_START [INTEGER
D_NOTFOUND_SYN_START [INTEGER
S_FETCH_RET_START INTEGER
S_FETCH_UPD_START INTEGER
S_LB_ALLOK_START INTEGER
S_LB_GBNEEDLOCK_START|INTEGER
S_LB_NEEDLOCK_START [INTEGER
S_LB_OLDVER_START INTEGER
S_GB_NEEDLOCK_START [INTEGER
S_GB_OLDVER_START INTEGER
S_NOTFOUND_|O_START |[INTEGER
S_NOTFOUND_SYN_START [INTEGER
D_ASYNC_FETCH_START [INTEGER
S_ASYNC_FETCH_START [INTEGER
D_ASYNC_READIO_START [INTEGER
S_ASYNC_READIO_START [INTEGER
AS_READ_STALL_START |INTEGER
AS_BATCH_WRITE_START |INTEGER
AS_WRITE_STALL_START |INTEGER
BIO_START INTEGER
DIO_START INTEGER
PAGEFAULTS_START INTEGER
PAGEFAULT_IO_START INTEGER
CPU_START INTEGER
CURRENT_PRIO_START [SMALLINT
VIRTUAL_SIZE_START INTEGER
WS_SIZE_START INTEGER
WS_PRIVATE_START INTEGER
WS_GLOBAL_START INTEGER
CLIENT_PC_END INTEGER
STREAM_ID_END INTEGER
REQ_ID_END INTEGER
COMP_STATUS_END INTEGER
REQUEST_OPER_END INTEGER

TRANS_ID_END

VARCHAR(16)

TRANS_ID_END_STR_ID [INTEGER STR_ID_DOMAIN
DBS_READS_END INTEGER
DBS_WRITES_END INTEGER
RUJ_READS_END INTEGER
RUJ_WRITES_END INTEGER
AlJ_WRITES_END INTEGER
ROOT_READS_END INTEGER
ROOT_WRITES_END INTEGER
BUFFER_READS_END INTEGER
GET_VM_BYTES_END INTEGER
FREE_VM_BYTES_END INTEGER
LOCK_REQS_END INTEGER
REQ_NOT_QUEUED END [INTEGER
REQ_STALLS_END INTEGER
REQ DEADLOCKS_END INTEGER
PROM_DEADLOCKS_END |[INTEGER
LOCK_RELS_END INTEGER
LOCK_STALL TIME_END |INTEGER
D_FETCH_RET_END INTEGER
D_FETCH_UPD_END INTEGER
D_LB_ALLOK_END INTEGER
D_LB_GBNEEDLOCK_END [INTEGER
D_LB_NEEDLOCK_END INTEGER
D_LB_OLDVER_END INTEGER
D_GB_NEEDLOCK_END INTEGER
D_GB_OLDVER_END INTEGER
D_NOTFOUND_IO_END INTEGER
D_NOTFOUND_SYN_END |[INTEGER
S_FETCH_RET_END INTEGER
S_FETCH_UPD_END INTEGER
S_LB_ALLOK_END INTEGER
S_LB_GBNEEDLOCK_END |INTEGER
S_LB_NEEDLOCK_END INTEGER
S_LB_OLDVER_END INTEGER
S_GB_NEEDLOCK_END INTEGER
S_GB_OLDVER_END INTEGER
S_NOTFOUND_IO_END INTEGER
S_NOTFOUND_SYN_END [INTEGER
D_ASYNC_FETCH_END INTEGER
S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER
S_ASYNC_READIO_END INTEGER
AS_READ_STALL_END INTEGER
AS_BATCH_WRITE_END INTEGER
AS_WRITE_STALL_END INTEGER
BIO_END INTEGER
DIO_END INTEGER
PAGEFAULTS_END INTEGER
PAGEFAULT_IO_END INTEGER
CPU_END INTEGER
CURRENT_PRIO_END SMALLINT
VIRTUAL_SIZE_END INTEGER
WS_SIZE_END INTEGER
WS_PRIVATE_END INTEGER
WS_GLOBAL_END INTEGER

Table 4-15 shows the TRANSACTION table.

Table 4-15 Columns for Table EPC$1_221 TRANSACTION

Column Name Data Type Domain
COLLECTION_RECORD_ID [SMALLINT COLLECTION_RECORD_ID_DOMAIN
IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN
CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
TIMESTAMP_START DATE VMS
TIMESTAMP_END DATE VMS
CLIENT_PC_START INTEGER
STREAM_ID_START INTEGER
LOCK_MODE_START INTEGER
TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID |[INTEGER STR_ID_DOMAIN
GLOBAL_TID_START VARCHAR(16)
GLOBAL_TID_START_STR_ID|INTEGER STR_ID_DOMAIN
DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AlJ_WRITES_START INTEGER

ROOT_READS_START INTEGER
ROOT_WRITES_START INTEGER
BUFFER_READS_START INTEGER
GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START |[INTEGER
LOCK_REQS_START INTEGER
REQ _NOT_QUEUED_START |[INTEGER
REQ_STALLS_START INTEGER
REQ DEADLOCKS_START [INTEGER
PROM_DEADLOCKS_START |[INTEGER
LOCK_RELS_START INTEGER
LOCK_STALL_TIME_START |[INTEGER
D_FETCH_RET_START INTEGER
D_FETCH_UPD_START INTEGER
D_LB_ALLOK_START INTEGER
D_LB_GBNEEDLOCK_START [INTEGER
D_LB_NEEDLOCK_START |[INTEGER
D_LB_OLDVER_START INTEGER
D_GB_NEEDLOCK_START [INTEGER
D_GB_OLDVER_START INTEGER
D_NOTFOUND_IO_START |[INTEGER
D_NOTFOUND_SYN_START [INTEGER
S_FETCH_RET_START INTEGER
S_FETCH_UPD_START INTEGER
S_LB_ALLOK_START INTEGER
S_LB_GBNEEDLOCK_START [INTEGER
S_LB_NEEDLOCK_START [INTEGER
S_LB_OLDVER_START INTEGER
S_GB_NEEDLOCK_START [INTEGER
S_GB_OLDVER_START INTEGER
S_NOTFOUND_IO_START |INTEGER
S_NOTFOUND_SYN_START |INTEGER
D_ASYNC_FETCH_START |[INTEGER
S_ASYNC_FETCH_START |INTEGER
D_ASYNC_READIO_START [INTEGER
S_ASYNC_READIO_START [INTEGER
AS_READ_STALL START |INTEGER
AS_BATCH_WRITE_START |INTEGER
AS_WRITE_STALL_START |INTEGER
AREA_ITEMS_START VARCHAR(128)

STR_ID_DOMAIN

AREA_ITEMS_START_STR_IDINTEGER
BIO_START INTEGER
DIO_START INTEGER
PAGEFAULTS_START INTEGER
PAGEFAULT_|IO_START INTEGER

CPU_START INTEGER
CURRENT_PRIO_START SMALLINT
VIRTUAL_SIZE_START INTEGER
WS_SIZE_START INTEGER
WS_PRIVATE_START INTEGER
WS_GLOBAL_START INTEGER
CROSS_FAC_2_START INTEGER
CROSS_FAC_3_START INTEGER
CROSS_FAC_7_START INTEGER
CROSS_FAC_14_START INTEGER
DBS_READS_END INTEGER
DBS_WRITES_END INTEGER
RUJ_READS_END INTEGER
RUJ_WRITES_END INTEGER
AlJ_WRITES_END INTEGER
ROOT_READS_END INTEGER
ROOT_WRITES_END INTEGER
BUFFER_READS_END INTEGER
GET_VM_BYTES_END INTEGER
FREE_VM_BYTES_END INTEGER
LOCK_REQS_END INTEGER
REQ NOT_QUEUED_END |[INTEGER
REQ_STALLS_END INTEGER
REQ_DEADLOCKS_END INTEGER
PROM_DEADLOCKS_END |[INTEGER
LOCK_RELS_END INTEGER
LOCK_STALL_TIME_END INTEGER
D_FETCH_RET_END INTEGER
D_FETCH_UPD_END INTEGER
D_LB_ALLOK_END INTEGER
D_LB_GBNEEDLOCK_END [INTEGER
D_LB_NEEDLOCK_END INTEGER
D_LB_OLDVER_END INTEGER
D_GB_NEEDLOCK_END INTEGER
D_GB_OLDVER_END INTEGER
D_NOTFOUND_IO_END INTEGER
D_NOTFOUND_SYN_END |[INTEGER
S_FETCH_RET_END INTEGER
S_FETCH_UPD_END INTEGER
S_LB_ALLOK_END INTEGER
S_LB_GBNEEDLOCK_END |INTEGER

Table 4-16 shows the REQUEST_BLR table.

S_LB_NEEDLOCK_END INTEGER
S_LB_OLDVER_END INTEGER
S_GB_NEEDLOCK_END INTEGER
S_GB_OLDVER_END INTEGER
S_NOTFOUND_IO_END INTEGER
S_NOTFOUND_SYN_END |INTEGER
D_ASYNC_FETCH_END INTEGER
S_ASYNC_FETCH_END INTEGER
D_ASYNC_READIO_END INTEGER
S_ASYNC_READIO_END INTEGER
AS_READ_STALL_END INTEGER
AS_BATCH_WRITE_END INTEGER
AS_WRITE_STALL_END INTEGER
AREA_ITEMS_END VARCHAR(128)
AREA_ITEMS_END_STR_ID |INTEGER STR_ID_DOMAIN
BIO_END INTEGER
DIO_END INTEGER
PAGEFAULTS_END INTEGER
PAGEFAULT_IO_END INTEGER
CPU_END INTEGER
CURRENT_PRIO_END SMALLINT
VIRTUAL_SIZE_END INTEGER
WS_SIZE_END INTEGER
WS_PRIVATE_END INTEGER
WS_GLOBAL_END INTEGER
CROSS_FAC_2 _END INTEGER
CROSS_FAC_3_END INTEGER
CROSS_FAC_7_END INTEGER
CROSS_FAC_14_END INTEGER

Table 4-16 Columns for Table EPC$1_221 REQUEST_BLR

Column Name Data Type Domain
COLLECTION_RECORD_ID[SMALLINT COLLECTION_RECORD_ID_DOMAIN
IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN
CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
TIMESTAMP_POINT DATE VMS
CLIENT_PC INTEGER
STREAM_ID INTEGER
REQ_ID INTEGER

TRANS_ID VARCHAR(16)
TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN
REQUEST_NAME VARCHAR(31)
REQUEST_NAME_STR_ID |INTEGER STR_ID_DOMAIN
REQUEST TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

4.12.10 A Way to Find the Transaction Type of a Particular
Transaction Within the Trace Database

The table EPC$1_221 TRANSACTION in the formatted Oracle Trace database has a column
LOCK_MODE_START of longword datatype. The values of this column indicate the type of transaction a
particular transaction was.

Value Transaction type
8 Read only

9 Read write

14 Batch update

4.12.11 Using Oracle TRACE Collected Data

The following example shows how the OPTIMIZE AS clause is reflected in the Oracle TRACE database.
When a trace collection is started the following SQL commands will record the request names.

SQL> attach “file personnel’;

SQL> select last_name, first_name
cont> from employees

cont> optimize as request_one;

SQL> select employee_id
cont> from employees
cont> optimize as request_two;

SQL> select employee_id, city, state
cont> from employees
cont> optimize as request_three;

SQL> select last_name, first_name, employee_id, city, state
cont> from employees
cont> optimize as request_four;

Once an Oracle TRACE database has been populated from the collection, a query such as the following cat
be used to display the request names and types. The type values are described in Table 3—10. The unname

gueries in this example correspond to the queries executed by interactive SQL to validate the names of the
tables an columns referenced in the user supplied queries.

SQL> select REQUEST_NAME, REQUEST_TYPE, TIMESTAMP_POINT
cont> from EPC$1_221 REQUEST_BLR;
REQUEST_NAME REQUEST_TYPE TIMESTAMP_POINT
1 15-JAN-1997 13:23:27.18
1 15-JAN-1997 13:23:27.77

REQUEST_ONE 1 15-JAN-1997 13:23:28.21
REQUEST_TWO 1 15-JAN-1997 13:23:56.55
REQUEST_THREE 1 15-JAN-1997 13:24:57.27
REQUEST_FOUR 1 15-JAN-1997 13:25:25.44

6 rows selected

The next example shows the internal query format (BLR) converted to SQL strings after
EPC$EXAMPLES:EPC BLR _TOSQL_CONVERTER.COM has been run.

SQL> SELECT A.REQUEST_NAME, B.SQL_STRING FROM
cont> EPC$1_221 REQUEST BLR A,
cont> EPC$SQL_QUERIES B
cont> WHERE A.CLIENT_PC = 0 AND A.SQL_ID = B.SQL_ID;
A.REQUEST_NAME

B.SQL_STRING
REQUEST_ONE

SELECT C1.LAST_NAME, C1.FIRST_ NAME. FROM EMPLOYEES C1

REQUEST_TWO
SELECT C1.EMPLOYEE_ID. FROM EMPLOYEES C1

REQUEST_THREE
SELECT C1.EMPLOYEE_ID, C1.CITY, CL.STATE. = FROM EMPLOYEES C1

4 rows selected

Table 4-17 shows the Request Types.

Table 4-17 Request Types

Symbolic Name Value Comment
RDB_K_REQTYPE_OTHER 0 A query executed internally by Oracle Rdb
A non-stored SQL statement, which includes compoungd

RDB_K_REQTYPE_USER REQUESIL |\ "~

RDB_K_REQTYPE_PROCEDURE |2

RDB_K _REQTYPE_FUNCTION 3 A stored function
RDB_K_REQTYPE_TRIGGER 4 A trigger action
RDB_K _REQTYPE_CONSTRAINT |5

A stored procedure

A table or column constraint

4.12.12 AIP Length Problems in Indexes that Allow Duplicates

When an index allows duplicates, the length stored in the AIP will be 215 bytes, regardless of the actual ind
node size. Because an index with duplicates can have variable node sizes, the 215-byte size is used as a
median length to represent the length of rows in the index's logical area.

When the row size in the AIP is less than the actual row length, it is highly likely that SPAM entries will show
space is available on pages when they have insufficient space to store another full size row. This is the mos
common cause of insert performance problems.

For example, consider a case where an index node size of 430 bytes (a common default value) is used; the
page size for the storage area where the index is stored is 2 blocks. After deducting page overhead, the
available space on a 2-block page is 982 bytes. Assume that the page in this example is initially empty.

1. A full size (430-byte) index node is stored. As 8 bytes of overhead are associated with each row
stored on a page, that leaves 982-430-8 = 544 free bytes remaining on the page.

2. A duplicate key entry is made in that index node and thus a duplicate node is created on the same
page. An initial duplicate node is 112 bytes long (duplicate nodes can have a variety of sizes
depending on when they are created, but for this particular example, 112 bytes is used). Therefore,
544-112-8 = 424 free bytes remain on the page.

At this point, 424 bytes are left on the page. That is greater than the 215 bytes that the AIP shows as the ro\
length for the logical area, so the SPAM page shows that the page has space available. However, an attem,
store a full size index node on the page will fail, because the remaining free space (424 bytes) is not enougt
store a 430-byte node.

In this case, another candidate page must be selected via the SPAM page, and the process repeats until a |
that truly has sufficient free space available is found. In a logical area that contains many duplicate nodes, a
significant percentage of the pages in the logical area may fit the scenario just described. When that is the
case, and a new full size index node needs to be stored, many pages may need to be read and checked be
one is found that can be used to store the row.

It is possible to avoid the preceding scenario by using logical area thresholds. The goal is to set a threshold
such that the SPAM page will show a page is full when space is insufficient to store a full size index node.

Using the previous example, here is how to properly set logical area thresholds to prevent excessive pages
checked on an index with a 430—-byte node size that is stored on a 2—block page. To calculate the proper
threshold value to use, you must first determine how full the page can get before no more full size nodes wil
fit on the page. In this example, a database page can have up to 982-430-8 = 544 hytes in use before the |
is too full. Therefore, if 544 or fewer bytes are in use, then enough space remains to store another full size
node. The threshold is then 544 / 982 = 553971, or 55%.

In addition, you can determine how full a page must be before a duplicate node of size 112 will no longer fit.
In this example, a database page can have up to 982-112-8 = 862 bytes in use before the page is too full.
Therefore, if 862 or fewer bytes are in use, then enough space remains to store another small duplicates no
The threshold is then 862 / 982 = .8778, or 88%.

Here is an example of creating an index with the above characteristics:

SQL> CREATE INDEX TEST_INDEX ON EMPLOYEES (LAST_NAME)
cont> STORE IN RDB$SYSTEM
cont> (THRESHOLD IS (55, 55, 88));

These settings mean that any page at over 55% full will not be fetched when inserting a full index node,
however, it may be fetched when inserting the smaller duplicates node. When the page is over 88% full ther
neither a full node nor a duplicate node can be stored, so the page is set as FULL. The lowest setting is not
used and so can be set to any value less than or equal to the lowest used threshold.

Note that the compression algorithm used on regular tables that have compression enabled does not apply
index nodes. Index nodes are not compressed like data rows and will always utilize the number of bytes tha
specified in the node size. Do not attempt to take into account a compression factor when calculating

thresholds for indexes.

4.12.13 RDM$BIND MAX_ DBR_COUNT Documentation
Clarification

Appendix A in Oracle Rdb7 Guide to Database Performance and Tuning incorrectly describes the use of the
RDM$BIND_MAX_DBR_COUNT logical name.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and the software is that the logical name only controls the number of database
recovery processes created at once during "node failure" recovery (that is, after a system or monitor crash c
other abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system failure), the database will
have to be recovered in a "node failure" recovery mode. This recovery will be performed by another monitor
in the cluster if the database is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_DBR_COUNT
configuration parameter define the maximum number of database recovery (DBR) processes to be
simultaneously invoked by the database monitor during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do not have global buffers
enabled. Databases that utilize global buffers have only one recovery process started at a time during a "no
failure" recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the global buffer stat
the database monitor will start a single database recovery (DBR) process to recover the Row Cache Server
(RCS) process and all user processes from the oldest active checkpoint in the database.

4.13 Oracle Rdb7 Guide to SQL Programming

This section provides information that is missing or changed in the Oracle Rdb7 Guide to SQL Programminc

4.13.1 Location of Host Source File Generated by the SQL
Precompiler

When the SQL precompiler generates host source files (for example, .c, .pas, or .for) from the precompiler
source files, it locates these files based on the Object qualifier in the command given to the SQL precompile

The following examples show the location where the host source file is generated.

When the Object qualifier is not specified on the command line, the object and the host source file take the
name of the SQL precompiler with the extensions of .obj and .c, respectively. For example:

$ sqlpre/cc scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 3 files.

When the Object qualifier is specified on the command line, the object and the host source take the name
given on the qualifier switch. It uses the default of the SQL precompiler source if a filespec is not specified. |
uses the defaults of .obj and .c if the extension is not specified. If the host language is a language other thar
it uses the appropriate host source extension (for example, .pas or .for). The files also default to the current
directory if a directory specification is not specified. For example:

$ sqlpre/cc/obj=myobj scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
$ dir myobj.*

Directory MYDISK:[LUND]
MYOBJ.C;1 MYOBJ.OBJ;2
Total of 2 files.

$ sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc
$ dir scc_try_mli_successful.*

Directory MYDISK:[LUND]
SCC_TRY_MLI_SUCCESSFUL.SC;2

Total of 1 file.
$ dir MYDISK:[lund.tmp]scc_try _mli_successful.*

Directory MYDISK:[LUND.TMP]

SCC_TRY_MLI_SUCCESSFUL.C;1 SCC_TRY_MLI_SUCCESSFUL.OBJ;2

Total of 2 files.

4.13.2 Remote User Authentication

In the Oracle Rdb7 Guide to SQL Programming, Table 15-1 indicates that implicit authorization works from
an OpenVMS platform to another OpenVMS platform using TCP/IP. This table is incorrect. Implicit
authorization only works using DECnet in this situation.

The Oracle Rdb7 Guide to SQL Programming will be fixed in a future release.

4.13.3 Additional Information About Detached Processes

Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a detached process.

Applications run from detached processes must ensure that the OpenVMS environment is established
correctly before running Oracle Rdb, otherwise Oracle Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from applications running as detached
processes will result in an error similar to the following:

%RDB-F-SYS_REQUEST, error from system services request
—-SORT-E-OPENOUT, error opening [file] as output
-RMS-F-DEV, error in device name or inappropriate device type for operation

The problem occurs because a detached process does not normally have the logical names SYS$LOGIN ol
SYS$SCRATCH defined.

There are two methods that can be used to correct this:

* Solution 1:
Use the DCL command procedure RUN_PROCEDURE to run the ACCOUNTS application:
RUN_PROCEDURE.COM includes the single line:
$ RUN ACCOUNTS_REPORT
Then execute this procedure using this command:
$ RUN/DETACH/AUTHORIZE SYS$SYSTEM:LOGINOUT/INPUT=RUN_PROCEDURE
This solution executes SYS$SYSTEM:LOGINOUT so that the command language interface (DCL) is
activated. This causes the logical names SYS$LOGIN and SYS$SCRATCH to be defined for the
detached process. The /AUTHORIZE qualifier also ensures that the users' process quota limits
(PQLs) are used from the system authorization file rather than relying on the default PQL system
parameters, which are often insufficient to run Oracle Rdb.
* Solution 2:
If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined, then prior to executing
any Oracle Rdb statement, you should define the following logical names:
¢+ RDMS$BIND_WORK_FILE
Define this logical name to allow you to reduce the overhead of disk I1/0O operations for
matching operations when used in conjunction with the RDMS$BIND_WORK_VM logical
name. If the virtual memory file is too small then overflow to disk will occur at the disk and
directory location specified by RDMS$BIND_WORK_FILE.
For more information on RDMS$BIND_WORK_FILE and RDMS$BIND_WORK_VM, see
the Oracle Rdb Guide to Database Performance and Tuning.

¢ SORTWORKO0, SORTWORK1, and so on
The OpenVMS Sort/Merge utility (SORT/MERGE) attempts to create sort work files in
SYS$SCRATCH. If the SORTWORK logical names exist, the utility will not require the
SYS$SCRATCH logical. However, note that not all queries will require sorting, and that
some sorts will be completed in memory and so will not necessarily require disk space.
If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to define further
SORTWORK logical names as described in the Oracle Rdb Guide to Database Performance
and Tuning.
You should also verify that sufficient process quotas are specified on the RUN/DETACH
command line, or defined as system PQL parameters to allow Oracle Rdb to execute.

4.14 Guide to Using Oracle SQL/Services Client APIs

The following information describes Oracle SQL/Services documentation errors or omissions.

» The Guide to Using Oracle SQL/Services Client APIs does not describe changes to size and format
integer and floating—point data types
Beginning with Oracle SQL/Services V5.1, the size and format of some integer and floating—point
data types is changed as follows:
¢ Trailing zeros occur in fixed—point numeric data types with SCALE FACTOR.
Trailing zeros are now included after the decimal point up to the number of digits specified by
the SCALE FACTOR. In versions of Oracle SQL/Services previous to V5.1, at most one
trailing zero was included where the value was a whole number.
The following examples illustrate the changes using a field defined as INTEGER(3):

V5.1 and Versions previous
higher to V5.1

1.000 1.0
23.400 23.4
567.890 567.89

¢ Trailing zeros occur in floating—point data types. Trailing zeros are now included in the
fraction, and leading zeros are included in the exponent, up to the maximum precision
available, for fields assigned the REAL and DOUBLE PRECISION data types.

Versions previous
Data Type V5.1 and higher to V5.1

REAL 1.2340000E+01 1.234E+1
DOUBLE PRECISION 5.678900000000000E+001 5.6789E+1

¢ Size of TINYINT and REAL data types is changed.
The maximum size of the TINYINT and REAL data types is changed to correctly reflect the
precision of the respective data types.
The following table shows the maximum lengths of the data types now and in previous

versions:
V5.1 and Versions previous
Data type higher toV5.1
TINYINT 4 6
REAL 15 24

» The Guide to Using Oracle SQL/Services Client APIs does not describe that the sqlsrv_associate()
service returns SQL error code —1028 when connecting to a database service if the user has not bee
granted the right to attach to the database.

When a user connects to a database service, the sqlsrv_associate() service completes with the SQL
error code —1028, SQL_NO_PRIV, if the user has been granted access to the Oracle SQL/Services

service, but has not been granted the right to attach to the database. A record of the failure is written
to the executor process's log file. Note that the sqlsrv_associate() service completes with the Oracle
SQL/Services error code —2034, SQLSRV_GETACCINF if the user has not been granted access to

the Oracle SQL/Services service.

4.15 Updates to System Relations

The following sections include updates to system relations that were inadvertently omitted in the SQL Help
and Rdb Help files in Release 7.0.

4.15.1 Clarification on Updates to the RDB$LAST _ALTERED
Column for the RDB$DATABASE System Relation

The ALTER DATABASE statement can be used to change many database attributes, however, only those
listed below will cause the RDB$DATABASE system relation to be changed. The column
RDBS$LAST_UPDATED is used to record the date and time when the system relation RDB$DATABASE is
updated and so will change when any of the following clauses are used by ALTER DATABASE.

« CARDINALITY COLLECTION IS { ENABLED | DISABLED }

« DICTIONARY IS [NOT] REQUIRED

« DICTIONARY IS NOT USED

« METADATA CHANGES ARE { ENABLED | DISABLED }

« MULTISCHEMA IS { ON | OFF }

« SECURITY CHECKING IS EXTERNAL (PERSONAL SUPPORT IS { ENABLED | DISABLED
)

« SYNONYMS ARE ENABLED

« WORKLOAD COLLECTION IS { ENABLED | DISABLED }

In addition any GRANT and REVOKE statements which use the ON DATABASE clause will cause the
RDB$LAST_UPDATED column to be updated for RDB$DATABASE.

4.15.2 Missing Descriptions of RDB$FLAGS

The HELP file for Oracle Rdb describes the system relations for Oracle Rdb and was missing these updatec
descriptions of the RDB$FLAGS column for several system relations.

Table 4-18 Changed Columns for RDB$INDICES Table

Column Name|Data Type|Domain Name Comments

RDBS$FLAGS |integer RDBS$FLAGS |A bit mask where the bits have the followipg
meaning when set:

« Bit 0: This index is of type
HASHED.

« Bit 1: This index uses the MAPPING
VALUES clause to compress integer
value ranges.

* Bit 2: If this is a HASHED index
then it is of type ORDERED. If clear
this indicates the index if of type
SCATTERED.

« Bit 3: Reserved for future use.

* Bit 4: This index has run length
compression enabled (ENABLE
COMPRESSION).

« Bit 5: This index is no longer used
(MAINTENANCE IS DISABLED).

« Bit 6 through 10: Reserved for future

use.

 Bit 11: This index has duplicates
compressed (DUPLICATES ARE
COMPRESSED).

 Bit 12: This index is of type
SORTED RANKED.

« Bits 13 through 31: Reserved for
future use.

Table 4-19 Changed Columns for RDBSRELATIONS Table

Column Name

Data Type

Domain Name|

Comments

RDB$FLAGS

integer

RDB$FLAGS

A bit mask where the bits have the following

meaning when set:

« Bit 0: This relation is a view.

« Bit 1: This relation is not
compressed.

 Bit 2: The SQL clause, WITH
CHECK OPTION, is used in this
view definition.

« Bit 3: Indicates a special internal
system relation.

* Bit 4: This view is not an ANSI
updatable view.

* Bit 5: This is an imported table in the

Distributed Option for Rdb catalog

« Bit 6: This is a passthru table in the
Distributed Option for Rdb catalog

* Bit 7: This is a partitioned view in
the Distributed Option for Rdb
catalog.

« Bit 8: This table has compression
defined by the storage map. When
set Bit 1 in this bit mask is ignored

* Bit 9: This is a temporary table.

* Bit 10: When bit 9 is set this is a
global temporary table, when cleaf
indicates a local temporary table.

* Bit 11: When bit 9 is set this
indicates that the rows in the
temporary table should be deleted
upon COMMIT.

* Bit 12: Reserved for future use.

* Bit 13: A table (via a computed by
column) or view references a local
temporary table.

* Bit 14: Reserved for future use.

14

« Bit 15: This is a system table with a

it

special storage map.
« Bits 16 through 31: Reserved for
future use.

Table 4-20 Changed Columns for RDB$STORAGE_MAPS Table

Column Name

Data Type

Domain Name|

Comments

RDB$FLAGS

integer

RDB$FLAGS

A bit mask where the bits have the
following meaning when set:

* Bit 0: This table or index is
mapped to page format MIXED
areas.

* Bit 1: This partition is not
compressed.

« Bit 2: This is a strictly partitioned
storage map, the partitioning
columns become read only for
UPDATE.

« Bit 3 through 31: Reserved for
future use.

4.16 Error Messages

The following subsections further describe or clarify error messages.

4.16.1 Clarification of the DDLDONOTMIX Error Message

The ALTER DATABASE statement performs two classes of functions: changing the database root structure:
in the .RDB file and modifying the system metadata in the RDB$SYSTEM storage area. The first class of
changes do not require a transaction to be active. However, the second class requires that a transaction be
active. Oracle Rdb does not currently support the mixing of these two classes of ALTER DATABASE
clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the {SQL-syntax}
clause can not be used with some ALTER DATABASE clauses" is displayed, and the ALTER DATABASE
statement fails.

SQL> alter database filename MF_PERSONNEL

cont> dictionary is not used

cont> add storage area JOB_EXTRA filename JOB_EXTRA,;
%RDB-F-BAD_DPB_CONTENT, invalid database parameters in the
database parameter block (DPB)

-RDMS-E-DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can
not be used with some ALTER DATABASE clauses

The following clauses may be mixed with each other but may not appear with other clauses such as ADD
STORAGE AREA or ADD CACHE:

* DICTIONARY IS [NOT] REQUIRED

* DICTIONARY IS NOT USED

* MULTISCHEMA IS { ON | OFF }

* CARDINALITY COLLECTION IS { ENABLED | DISABLED }
* METADATA CHANGES ARE { ENABLED | DISABLED }

* WORKLOAD COLLECTION IS { ENABLED | DISABLED }

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into two statements,
one for each class of actions.

SQL> alter database filename MF_PERSONNEL

cont> dictionary is not used;

SQL> alter database filename MF_PERSONNEL

cont> add storage area JOB_EXTRA filename JOB_EXTRA,

Chapter 5
Known Problems and Restrictions

This chapter describes problems and restrictions relating to Oracle Rdb Release 7.1.0.1, and includes
workarounds where appropriate.

5.1 Known Problems and Restrictions in All
Interfaces

This section describes known problems and restrictions that affect all interfaces for Release 7.1.0.1.

5.1.1 RDB-E-ARITH_EXCEPT Error From the Rdb Optimizer

Bug 1694309

When using workload statistics, it is possible that a query that joins several tables together can produce a
divide by zero error.

The following example shows the result of trying to execute a query that exposes the problem.

%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000000,
Fmask=00000001, summary=04, PC=0000000000FBF748, PS=0000000B
-SYSTEM-F-FLTDIV, arithmetic trap, floating/decimal divide by zero at

PC=0000000000FBF748, PS=0000000B

As a side effect of this problem, some queries can be inaccurately costed by the optimizer, which may lead
less than optimal retrieval strategies. The following simple example shows a query where the cardinality is
inaccurately calculated from the workload statistics because of this problem.

SQL> set flags 'estimates'
SQL> select * from t1, t2 where t1.f1=t2.f1;
Solutions tried 6
Solutions blocks created 4
Created solutions pruned 1
Cost of the chosen solution 1.5162601E+01
Cardinality of chosen solution 0.0000000E+00
~O: Workload statistics used

T1.F1 T2.F1

1 1

iOOO rows selected
The problem can be avoided using any of the following techniques:
» Ensuring that workload data does not have a null factor of exactly 0.0 or 1.0.
* Removing workload statistics.
» Ensuring that the table cardinalities are greater than 1 for all tables in the query.
» Use of the OLD_COST_MODEL debug flag.
This problem will be corrected in Oracle Rdb Release 7.1.0.2.

5.1.2 RMU Fails to Perform OPTIMIZER_STATISTICS Actions on
Some Databases

Attempts to use RMU/SHOW OPTIMIZER_STATISTICS, RMU/COLLECT OPTIMIZER_STATISTICS,
and related commands will fail if the default database character set is not DEC_MCS.

The following example shows the problem for a DEC_KANJI database.

$ rmu/show optimizer_statistics DISK1:[TESTING]SAMPLE.RDB
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADCOMPARE, incompatible character sets prohibit the requested
comparison

%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU-F-FTL_SHOW, Fatal error for SHOW operation at 29—-OCT-2001 16:31:20.59
$

$ rmu/collect optimizer_statistics DISK1:[TESTING]SAMPLE.RDB
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADCOMPARE, incompatible character sets prohibit the requested
comparison

%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

%RMU-F-FTL_ANA, Fatal error for ANALYZE operation at 29-OCT-2001 16:31:36.12

This problem will be corrected in Oracle Rdb Release 7.1.0.2.

5.1.3 Possible RMU Bugcheck or Failure to Notify Triggering of
User Defined Events

The notify or invoke associated with a user defined event in RMU/SHOW STATISTICS may not work or an
RMU bugcheck may occur when the user defined event triggers.

This problem will be corrected in Oracle Rdb Release 7.1.0.2.

5.1.4 Optimization of Check Constraints
Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the optimizer the
when the same or similar constraint is phrased using referential integrity (PRIMARY and FOREIGN KEY)
constraints.

For example, | have two tables T1 and T2, both with one column, and | wish to ensure that all values in table
T1 exist in T2. Both tables have an index on the referenced field. | could use a PRIMARY KEY constraint on
T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2

cont> alter column f2 primary key not deferrable;
SQL> alter table t1

cont> alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the FOREIGN KEY table
where the FOREIGN KEY has the deleted value. This can be seen as an index lookup on T1 in the retrieval
strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name 12 [1:1]
Index only retrieval of relation T1
Index name 11 [1:1]
%RDB-E-INTEG_FAIL, violation of constraint T1L_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that only those
rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary key or
that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1
cont> alter column f1
cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name 12 [1:1]
Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation T1
Index name 11 [0:0]
Cross block entry 2
Conjunct Aggregate-F1 Conjunct
Index only retrieval of relation T2
Index name 12 [0:0]
%RDB-E-INTEG_FAIL, violation of constraint T1L_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the constrai
the entire index on table T1 is being scanned and for each key, the entire index in table T2 is being scannec
The behavior can be improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1

cont> alter column f1

cont> check (f1 in (select * from t2 where f2=f1))
cont> not deferrable;

or:

SQL> alter table t1

cont> alter column f1

cont> check (f1=(select * from t2 where f2=f1))
cont> not deferrable;

In both cases the retrieval strategy will look like this:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
Index name 12 [1:1]
Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation T1
Index name 11 [0:0]
Cross block entry 2
Conjunct Aggregate-F1 Conjunct
Index only retrieval of relation T2
Index name 12 [1:1]
%RDB-E-INTEG_FAIL, violation of constraint T1L_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS" operators with
respect to null handling, and the complexity of dealing with nhon—equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a series of
triggers to perform the constraint check. The following triggers perform a similar check to the constraints
above.

SQL> create trigger t1_insert

cont> after insert on tl

cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;

SQL> create trigger t1_update

cont> after update on t1

cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;

SQL>! A delete trigger is not needed on T1.

SQL> create trigger t2_delete

cont> before delete on t2

cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;

SQL> create trigger t2_modify

cont> after update on t2

cont> referencing old as t20 new as t2n

cont> when (exists (select * from t1 where f1=t20.f2))
cont> (error) for each row;

SQL>! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate-F1 Index only retrieval of relation T1
Index name 11 [1:1]
Temporary relation ~ Get Retrieval by index of relation T2
Index name 12 [1:1]
%RDB-E-TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
-RDMS-E-TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is used to
examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of the
triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex, and cannot be phrased using
referential integrity constraints. For example, if the application is such that the value in table T1 may be
spaces or NULL to indicate the absence of a value, the above triggers could easily be modified to allow for
these semantics.

5.1.5 Using Databases from Releases Earlier Than V5.1

You cannot convert or restore databases earlier than V5.1 directly to V7.1. The RMU Convert command for
V7.1 supports conversions from V5.1 through V7.0 only. If you have a V3.0 through V5.0 database, you mu
convert it to at least V5.1 and then convert it to V7.1. For example, if you have a V4.2 database, convert it
first to at least V5.1, then convert the resulting database to V7.1.

If you attempt to convert a database created prior to V5.1 directly to V7.1, Oracle RMU generates an error.

5.1.6 PAGE TRANSFER VIA MEMORY Disabled

Oracle internal testing has revealed that the PAGE TRANSFER VIA MEMORY option for global buffers is
not as robust as is needed for the mission critical environments where Oracle Rdb7 is often deployed. This
feature has been disabled in release 7.1. Oracle intends to re—enable this feature in a future release.

5.1.7 Carryover Locks and NOWAIT Transaction Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the blocking user to
receive the BLAST signal, the requesting user must request the locked resource with WAIT (which a
NOWAIT transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate
that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the
NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAI
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carryover locks. There can be a delay before the transactions with carryover locks detect the
presence of the NOWAIT transaction and release their carryover locks. You can detect this condition by
examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently,
the application is probably experiencing a decrease in performance, and you should consider disabling the
carryover lock behavior.

5.1.8 Unexpected Results Occur During Read—Only
Transactions on a Hot Standby Database

When using Hot Standby, it is typical to use the standby database for reporting, simple queries, and other
read-only transactions. If you are performing these types of read—only transactions on a standby database,
sure you can tolerate a READ COMMIT level of isolation. This is because the Hot Standby database might |
updated by another transaction before the read—only transaction finishes, and the data retrieved might not b
what you expected.

Because Hot Standby does not write to the snapshot files, the isolation level achieved on the standby datab
for any read—only transaction is a READ COMMITED transaction. This means that nonrepeatable reads anc
phantom reads are allowed during the read—only transaction:

« Nonrepeatable read operations: Allows the return of different results within a single transaction wher
an SQL operation reads the same row in a table twice. Nonrepeatable reads can occur when anothe
transaction modifies and commits a change to the row between transactions. Because the standby
database will update the data when it confirms a transaction has been committed, it is very possible
see an SQL operation on a standby database return different results.

» Phantom read operations: Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence check) twice. Phantoms ca
occur if another transaction inserted a new record and committed the insertion between executions c
the range retrieval. Again, because the standby database may do this, phantom reads are possible.

Thus, you cannot rely on any data read from the standby database to remain unchanged. Be sure your
read-only transactions can tolerate a READ COMMIT level of isolation before you implement procedures
that read and use data from a standby database.

5.1.9 IMPORT Unable to Import Some View Definitions

View definitions that reference SQL functions, created by the CREATE MODULE statement, cannot be
imported by the SQL IMPORT statement. This is because the views are defined before the functions
themselves exist.

The following example shows the errors from IMPORT:

IMPORTing view TVIEW

%SQL-F-NOVIERES, unable to import view TVIEW
%RDB-E-NO_META_UPDATE, metadata update failed
—RDB-E-OBSOLETE_METADA, request references metadata objects that no

longer exist

-RDMS-E-RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist

—-RDMS-F-TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem:

create database filename badimp;
create table t (sex char);

create module TFORMAT
language SQL

function FORMAT_OUT (:s char)
returns char(4);
return (case :s
when 'F' then 'Female'
when 'M' then 'Male'
else NULL
end);
end module;

create view TVIEW (m_f) as
select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the workaround is to save the view
definitions and reapply them after the import operation completes.

This restriction does not apply to external functions, created using the CREATE FUNCTION statement, as
these database objects are defined before tables and views.

5.1.10 Both Application and Oracle Rdb Using SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service (possibly through RTL routine
such as LIBSWAIT), the application must ensure that the event being waited for has actually occurred. Orac
Rdb uses $HIBER/$WAKE sequences for interprocess communications particularly when the ALS (AlJ Log
Server) feature is enabled.

The use of the $WAKE system service by Oracle Rdb can interfere with other users of $HIBER (such as the
routine LIBSWAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly
resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids continuing
without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo—-code shows how a flag can be used to indicate that a timed—-wait has completed
correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to TRUE. This
code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
BEGIN

I Clear the timer flag
TIMER_FLAG = FALSE
! Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$ NORMAL
THEN BEGIN
LIB$SIGNAL (STAT)
END
! Hibernate. When the $HIBER completes, check to make
I sure that TIMER_FLAG is set indicating that the wait
I has finished.
WHILE TIMER_FLAG = FALSE
DO BEGIN
SYSS$HIBER()
END
END
ROUTINE TIMER_AST:
BEGIN
I Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE
I Wake the main-line code
STAT = SYS$SWAKE ()
IF STAT <> SS$ NORMAL
THEN BEGIN
LIB$SIGNAL (STAT)
END
END

The LIB$K_NOWAKE flag can be specified when using the OpenVMS LIB$WAIT routine to allow an
alternate wait scheme (using the $SYNCH system service) that can avoid potential problems with multiple
code sequences using the $HIBER system service.

5.1.11 Bugcheck Dump Files with Exceptions at
COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files indicate an exception at COSI_CHF_SIGNAL. This
location is, however, not the address of the actual exception. The actual exception occurred at the previous
call frame on the stack (the one listed as the next Saved PC after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","-F-","-E-"

wiikk Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI-F-BUGCHECK, internal consistency failure

Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00COBEG6C : PSII2BALANCE + 0000105C

Saved PC = 00COF4D4 : PSII2INSERTT + 000005CC

Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset 00000318. If you have a
bugcheck dump with an exception at COSI_CHF_SIGNAL, it is important to note the next "Saved PC"
because it is needed when working with Oracle Rdb Worldwide Support.

5.1.12 Read-only Transactions Fetch AIP Pages Too Often

Oracle Rdb read—-only transactions fetch Area Inventory Pages (AIP) to ensure that the logical area has not
been madified by an exclusive read—write transaction. This check is needed because an exclusive read—wri
transaction does not write snapshot pages and these pages may be needed by the read-only transaction.

Because AIPs are always stored in the RDB$SYSTEM area, reading the AIP pages could represent a
significant amount of 1/0 to the RDB$SYSTEM area for some applications. Setting the RDB$SYSTEM area
to read—only can avoid this problem, but it also prevents other online operations that might be required by tf
application so it is not a viable workaround in all cases.

This problem has been reduced in Oracle Rdb release 7.0. The AIP entries are now read once and then are
read again unless they need to be. This optimization requires that the carry—over locks feature be enabled (|
is the default setting). If carry over locks are not enabled, this optimization is not enabled and the behavior i
the same as in previous releases.

5.1.13 Row Cache Not Allowed While Hot Standby Replication is
Active

The row cache feature may not be enabled on a hot standby database while replication is active. The hot
standby feature will not start if row cache is enabled.

This restriction exists because rows in the row cache are accessed via logical dbkeys. However, informatior
transferred to the hotstandby database via the after image journal facility only contains physical dbkeys.
Because there is no way to maintain rows in the cache via the hot standby processing, the row cache must |
disabled when the standby database is open and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU Open command. To
open the hot standby database prior to starting replication, use the ROW_CACHE=DISABLED qualifier on
the RMU Open command.

5.1.14 Excessive Process Page Faults and other Performance
Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. One factor contributing
to Oracle Rdb process page faulting is sorting operations. Common causes of sorts include the SQL GROU
BY, ORDER BY, UNION, and DISTINCT clauses specified for a query, and index creation operations.
Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle Rdb sort
operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and does n
generally call the routines in the OpenVMS run-time library. A copy of the SORT32 code is used to provide
stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort routines fror
executive processor mode which is difficult to do using the SORT32 shareable image. SQL IMPORT and
RMU Load operations do, however, call the OpenVMS SORT run-time library.

At the beginning of a sort operation, the SORT code allocates some memory for working space. The SORT
code uses this space for buffers, in—-memory copies of the data, and sorting trees.

SORT does not directly consider the processes gquotas or parameters when allocating memory. The effects
WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the SORT code attempts
to adjust the process working set to the maximum possible size using the $ADJWSL system service

specifying a requested working set limit of %X7FFFFFFF pages (the maximum possible). SORT then uses :
value of 75% of the returned working set for virtual memory scratch space. The scratch space is then
initialized and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to the
working set. Pages that were in the working set already may be faulted out as the new pages are faulted in.
Once the sort operation completes and SORT returns back to Oracle Rdb, the pages that may have been
faulted out of the working set are likely to be faulted back into the working set.

When a process working set is limited by the working set quota (WSQUOTA) parameter and the working se
extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines can cause many pag
faults as the working set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help reduce
the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal to the
WSMAX parameter. This means that all processes on the system end up with WSEXTENT the same as
WSMAX. Since that might be quite high, sorting might result in excessive page faulting. You may want to
explicitly set PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort operations. When the operatic
can not be done in the available memory, SORT uses temporary disk files to hold the data as it is being sort
The Oracle Rdb7 Guide to Database Performance and Tuning contains more detailed information about sor
work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort is to use if work
files are required. The default is 2 and the maximum number is 10. The work files can be individually
controlled by the SORTWORKRN logical names (where n is from 0 through 9). You can increase the efficienc
of sort operations by assigning the location of the temporary sort work files to different disks. These
assignments are made by using up to ten logical names, SORTWORKO through SORTWORKO.

Normally, SORT places work files in the your SYS$SCRATCH directory. By default, SYS$SCRATCH is the
same device and directory as the SYS$LOGIN location. Spreading the I/O load over many disks improves
efficiency as well as performance by taking advantage of the system resources and helps prevent disk I/O
bottlenecks. Specifying that a your work files reside on separate disks permits overlap of the SORT read/wri
cycle. You may also encounter cases where insufficient space exists on the SYS$SCRATCH disk device (fc
example, while Oracle Rdb builds indexes for a very large table). Using the SORTWORKO through
SORTWORKOJ logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the sorted runs into larger
groups. If the source data is mostly sorted, then not every sort work file may need to be accessed. This is a
possible source of confusion because even with 10 sort work files, it is possible to exceed the capacity of th
first SORT file and the sort operation fails never having accessed the remaining 9 sort work files.

Note that the logical names RDMS$BIND WORK_VM and RDMS$BIND WORK_FILE do not affect or
control the operation of sort. These logical names are used to control other temporary space allocation withi
Oracle Rdb.

5.1.15 Control of Sort Work Memory Allocation

Oracle Rdb uses a built-in SORT32 package to perform many sort operations. Sometimes, these sorts exhi
a significant performance problem when initializing work memory to be used for the sort. This behavior can
be experienced, for example, when a very large sort cardinality is estimated, but the actual sort cardinality is
small.

In rare cases, it may be desirable to artificially limit the sort package's use of work memory. Two logicals
have been created to allow this control. In general, there should be no need to use either of these logicals a
misuse of them can significantly impact sort performance. Oracle recommends that these logicals be used
carefully and sparingly.

The logical names are:

Table 5-1 Sort Memory Logicals

Logical Definition

Specifies a percentage of the process's working set limit
to be used when allocating sort memory for the builtin
SORT32 package. If not defined, the default value is| 75
(representing 75%), the maximum value is 75
(representing 75%), and the minimum value is 2
(representing 2%). Processes with vary large working set
limits can sometimes experience significant page faylting
and CPU consumption while initializing sort memory
This logical name can restrict the sort work memory o a
percentage of the processes maximum working set.

RDMS$BIND_SORT_MEMORY_WS_FACTO-R

Specifies an absolute limit to be used when allocating
sort memory for the built-in SORT32 package. If not
RDMS$BIND_SORT_MEMORY_MAX_BYTES|defined, the default value is unlimited (up to 1GB), the
maximum value is 2,147,483,647 and the minimum
value is 32,768.

5.1.16 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can interf
with the retrieval of the cursor by modifying the index columns key values used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >="'M', it is likely that the query will

use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update occurs during the
processing of the cursor which changes the LAST_NAME of an employee from "Mason" to "Rickard", then it
is possible that that employee row will be processed twice. First when it is fetched with name "Mason", and
then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which optimize t
I/0O requirements, such as Index Retrieval, can be subject to this problem. Interference from queries by othe
sessions are avoided by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For example, if the
SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target rows, or the

RDO/RDML MODIFY statement uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween problem. This can be seer
the access strategy in Example 2-2 as a "Temporary relation" being created to hold the result of the cursor

query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ... WHERE
CURRENT OF statements will not be seen until after the cursor is declared and opened. In these
environments, you must use the FOR UPDATE clause to specify that columns selected by the cursor will be

updated during cursor processing. This is an indication to the Rdb optimizer so that it protects against the
Halloween problem in this case. This is shown in Example 2-1 and Example 2-2.

The following example shows that the EMP_LAST NAME index is used for retrieval. Any update performed
will possibly be subject to the Halloween problem.

SQL> set flags 'strategy’;

SQL> declare emp cursor for

cont> select * from employees where last_name >='M'

cont> order by last_name;

SQL> open emp;

Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]

SQL> close emp;

The following example shows that the query specifies that the column LAST_NAME will be updated by
some later query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a
"Temporary Relation" to hold the query result set. Any update performed on LAST_NAME will now avoid
the Halloween problem.

SQL> set flags 'strategy’;
SQL> declare emp?2 cursor for
cont> select * from employees where last_name >='M'
cont> order by last_name
cont> for update of last_name;
SQL> open emp2;
Temporary relation ~ Conjunct Get
Retrieval by index of relation EMPLOYEES
Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler, or the SQL module language compiler it can be determined from usage
that the cursor context will possibly be updated during the processing of the cursor because all cursor relate
statements are present within the module. This is also true for the RDML/RDBPRE precompilers when you
use the DECLARE_STREAM and START_STREAM statements and use the same stream context to perfor
all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO stream)
not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor then the actua
rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the query is separate fr
the cursors query (i.e. doesn't reference the cursor context), then the optimizer does not know that the cursc
selected rows are potentially updated and so cannot perform the normal protection against the Halloween
problem.

5.2 SQL Known Problems and Restrictions

This section describes known problems and restrictions for the SQL interface for release 7.1.

5.2.1 Interchange File (RBR) Created by Oracle Rdb Release 7.1
Not Compatible With Previous Releases

To support the large number of new database attributes and objects, the protocol used by SQL EXPORT an
SQL IMPORT has been enhanced to support more protocol types. Therefore, this format of the Oracle Rdb
release 7.1 interchange files can no longer be read by older versions of Oracle Rdb.

Oracle Rdb continues to provide upward compatibility for interchange files generated by older versions.

Oracle Rdb has never supported backward compatibility, however, it was sometimes possible to use an
interchange file with an older version of IMPORT. However, this protocol change will no longer permit this
usage.

5.2.2 Unexpected NO_META UPDATE Error Generated by DROP
MODULE ... CASCADE When Attached by PATHNAME

The SQL DROP MODULE ... CASCADE statement may sometimes generate an unexpected
NO_META_UPDATE error. This occurs when the session attaches to a database by PATHNAME. For
example:

SQL> drop module m1 cascade;

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
-RDMS-E-MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle CDD/Repository does not
support CASCADE. The workaround is to attach by FILENAME and perform the metadata operation.

In a future release of Oracle Rdb, an informational message will be issued describing the downgrade from
CASCADE to RESTRICT in such cases.

5.2.3 Problem Exporting and Importing Sequences with
ANSI-Style Databases

Exporting and importing sequences defined in an ANSI-style databases may result in an error. An error will
occur if a sequence exists in the database with another object imported after the sequence. For example,
importing an ANSI-style database which has sequences and modules defined will return an error. For
example:

%SQL-F-BADCORATT, invalid core attribute 00, 14 in .RBR file

This problem will be fixed in a future release of Oracle Rdb.

5.2.4 System Relation Change for International Database Users

Due to an error in creating the RDB$FIELD_VERSIONS system relation, another system relation,
RDB$STORAGE_MAP_AREAS, cannot be accessed if the session character sets are not set to DEC_MCS

This problem prevents the new Oracle Rdb GUIs, specifically the Oracle Rdb Schema Manager, from viewir
indexes and storage maps from existing Oracle Rdb databases.

The problem can be easily corrected by executing the following SQL statement after attaching to the databa

SQL> UPDATE RDBS$FIELD_VERSIONS SET RDB$FIELD_SUB_TYPE = 32767
cont> WHERE RDBS$FIELD_NAME = 'RDB$AREA_NAME';

5.2.5 Single Statement CALL Does Not Support Truncated
Parameter List or DEFAULT Keyword

Oracle Rdb now allows the CALL statement in a compound statement to omit trailing IN mode parameters
which have had a DEFAULT value defined in the procedure definition. Also supported is the DEFAULT
keyword to replace an explicit value for the parameter.

However, the simple CALL statement (used outside a BEGIN END block) is not adaptable in this way and
requires a full set of parameters and values. This is because a parameter signature is calculated for this typ
CALL statement so that the parameter block passed by the calling routine and used by the called routine
match exactly in parameter count and data types.

This is a permanent restriction for the simple CALL statement.

The following example shows that truncated parameter lists are fully supported by the compound use form c
the CALL statement, but not by the simple CALL statement.

SQL> ATTACH 'FILENAME db$:scratch’;

SQL> CREATE MODULE mmm

cont> PROCEDURE mmm_p (IN :a INTEGER DEFAULT 0, IN :b INTEGER DEFAULT 1);
cont> TRACE :a, :b;

cont> END MODULE;

SQL> SET FLAGS 'Trace',

SQL> CALL mmm_p (10,20);

~Xt: 10 20

SQL> CALL mmm_p (10);

%SQL-F-ARGCOUNT, Procedure MMM_P expected 2 parameters, was passed 1
SQL> call MMM_P ();

%SQL-F-ARGCOUNT, Procedure MMM _P expected 2 parameters, was passed 0
SQL> begin

cont> CALL mmm_p (10,20);

cont> CALL mmm_p (10);

cont> call mmm_p ();

cont> END;
~Xt: 10 20
~Xt: 10 1
~Xt: 0 1

For maximum flexibility, use the CALL statement inside a compound statement which supports truncated
parameter lists, the DEFAULT keyword, and full value expressions for parameter arguments.

5.2.6 Single Statement LOCK TABLE is Not Supported for SQL
Module Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single statement within the module
language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use BEGIN... END around the
statement as shown in the following example. This format provides all the syntax and flexibility of LOCK
TABLE.

This restriction does not apply to interactive or dynamic SQL.

The following extract from the module language listing file shows the reported error if you use LOCK
TABLE as a single statement procedure. The other procedure in the same module is acceptable because it
a compound statement that contains the LOCK TABLE statement.

1 MODULE sample_test

2 LANGUAGE C

3 PARAMETER COLONS

4

5 DECLARE ALIAS FILENAME 'mf_personnel'

6

7 PROCEDURE a (SQLCODE);

8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
%SQL-F-WISH_LIST, (1) Feature not yet implemented — LOCK TABLE requires compound
statement

9

10 PROCEDURE b (SQLCODE);

11 BEGIN

12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
13 END;

To workaround this problem of using LOCK TABLE for SQL module language or embedded SQL
application, use a compound statement in an EXEC SQL statement.

5.2.7 Restriction for CREATE STORAGE MAP Statement on
Table with Data

Oracle Rdb V7.0 added support that allows a storage map to be added to an existing table that contains dat
The Oracle Rdb7 Guide to Database Design and Definition describes this feature and lists restrictions.

Oracle Rdb release 7.1 adds the restriction that the storage map cannot include a WITH LIMIT clause for th
storage area. The following example shows the resulting error:

SQL> create table MAP_TEST1 (a integer, b char(10));

SQL> create index MAP_TEST1_INDEX on MAP_TEST1 (a);

SQL> insert into MAP_TEST1 (a, b) values (3, 'Third");

1 row inserted

SQL> create storage map MAP_TEST1_MAP for MAP_TEST1

cont> store using (a) in RDB$SYSTEM

cont> with limit of (10); —- cannot use WITH LIMIT clause
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST1" has data in it
—-RDMS-E-NOCMPLXMAP, can not use complex map for non—empty table

5.2.8 Multistatement or Stored Procedures May Cause Hangs

Long-running multistatement or stored procedures can cause other users in the database to hang if the
procedures obtain resources needed by those other users. Some resources obtained by the execution of a
multistatement or stored procedure are not released until the multistatement or stored procedure finishes.
Thus, any—-long running multistatement or stored procedure can cause other processes to hang. This proble
can be encountered even if the statement contains SQL COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second ses:
attempts to backup the database but hangs forever.

Session 1:

SQL> attach ‘'filename MF_PERSONNEL';

SQL> create function LIBSWAIT (in real by reference)

cont> returns integer;

cont> external name LIB$SWAIT location 'SYS$SHARE:LIBRTL.EXE'
cont> language general general parameter style variant;

SQL> commit;

$SQL

SQL> attach ‘filename MF_PERSONNEL;

SQL> begin

cont> declare :LAST_NAME LAST_NAME_DOM;
cont> declare :WAIT_STATUS integer;

cont> loop

cont> select LAST_NAME into :LAST_NAME
cont> from EMPLOYEES where EMPLOYEE_ID ='00164';
cont> rollback;

cont> set :WAIT_STATUS = LIBWAIT (5.0);
cont> set transaction read only;

cont> end loop;

cont> end;

Session 2:
$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session, you can see that the backup process is waiting
for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL

Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted

20204383 RMU BACKUP..... 5600A476 00010001 CW NL
2020437B SQL............ 3BO0A35C 00010001 PR PR

There is no workaround for this restriction. When the multistatement or stored procedure finishes execution,
the resources needed by other processes are released.

5.2.9 Use of Oracle Rdb from Shareable Images

If code in the image initialization routine of a shareable image makes any calls into Oracle Rdb, through SQ
or any other means, access violations or other unexpected behavior may occur if Oracle Rdb images have r
had a chance to do their own initialization.

To avoid this problem, applications must take one of the following steps:
* Do not make Oracle Rdb calls from the initialization routines of shareable images.

* Link in such a way that the RDBSHR.EXE image initializes first. You can do this by placing the
reference to RDBSHR.EXE and any other Oracle Rdb shareable images last in the linker options file

This is not a bug; it is a restriction resulting from the way OpenVMS image activation works.

5.3 Oracle RMU Known Problems and Restrictions

This section describes known problems and restrictions for the RMU interface for release 7.1.

5.3.1 RMU/CONVERT Fails to Correctly Define the
RDB$SWORKLOAD Table

When a database is converted to Rdb 7.1 and the optional system table RDB$WORKLOAD is present, Rdb
fails to correctly define the metadata for this table, and SQL is unable to see the data type for the
RDB$NULL_FACTOR column.

The collection and utilization of workload data is unaffected by this problem. Only SQL applications are
affected.

The following is an example of a database incorrectly converted from Rdb 7.0 to Rdb 7.1

SQL> show table rdb$workload
Information for table RDBSWORKLOAD

Columns for table RDBSWORKLOAD:

Column Name Data Type Domain
RDB$CREATED DATE VMS
RDB$LAST_ALTERED DATE VMS
RDB$DUPLICITY_FACTOR BIGINT(7)
RDB$NULL_FACTOR Data type: 0
RDB$RELATION_ID INTEGER
RDB$FLAGS INTEGER
RDBS$FIELD_GROUP CHAR(31)
RDB$SECURITY_CLASS CHAR(20)

The RDB$NULL_FACTOR datatype is incorrectly interpreted. This will result in the following problem:

SQL> select rdb$null_factor from rdb$workload;
%SQL-F-FLDNOTCRS, Column RDB$NULL_FACTOR was not found in the tables in current
scope

A workaround for this problem is to have a sufficiently privileged user execute the following SQL command,
commit, and then have applications that use this column DISCONNECT and reattach to the database.

SQL> update rdb$relation_fields set rdb$field_source="RDB$SCALED_COUNTER'
cont> where rdb$field_source="RDB$PROBABILITY";

This problem will be corrected in Oracle Rdb Release 7.1.0.2.

5.3.2 RMU Convert Fails When Maximum Relation ID is
Exceeded

If, when relation IDs are assigned to new system tables during an RMU Convert of an Oracle Rdb V7.0
database to a V7.1 database, the maximum relation ID of 8192 allowed by Oracle Rdb is exceeded, the fata
error %RMU-F-RELMAXIDBAD is displayed and the database is rolled back to V70. Contact your Oracle
support representative if you get this error. Note that when the database is rolled back, the fatal error
%RMU-F-CVTROLSUC is displayed to indicate that the rollback was successful but caused by the detectic
of a fatal error and not requested by the user.

This condition only occurs if there are an extremely large number of tables defined in the database or if a lat
number of tables were defined but have subsequently been deleted.

The following example shows both the %RMU-F-RELMAXIDBAD error message if the allowed database
relation ID maximum of 8192 is exceeded and the %RMU-F-CVTROLSUC error message when the
database has been rolled back to V7.0 since it cannot be converted to V7.1:

$rmu/convert mf_personnel

%RMU-I-RMUTXT_000, Executing RMU for Oracle Rdb V7.1-00

Are you satisfied with your backup of

DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of

any associated .aij files [N]? Y

%RMU-I-LOGCONVRT, database root converted to current structure level
%RMU-F-RELMAXIDBAD, ROLLING BACK CONVERSION - Relation ID exceeds maximum
8192 for system table RDB$SRELATIONS

%RMU-F-CVTROLSUC, CONVERT rolled-back for
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0

The following example shows the normal case when the maximum allowed relation ID is not exceeded:

$rmu/convert mf_personnel

%RMU-I-RMUTXT_000, Executing RMU for Oracle Rdb V7.1-00

Are you satisfied with your backup of
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of

any associated .aij files [N]? Y

%RMU-I-LOGCONVRT, database root converted to current structure level
%RMU-S-CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
successfully converted from version V7.0 to V7.1

%RMU-I-CVTCOMSUC, CONVERT committed for
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.1

5.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical
Area Information

The RMU Unload /After_Journal command uses the on—disk area inventory pages (AIPs) to determine the
appropriate type of each logical area when reconstructing logical dbkeys for records stored in mixed—format
storage areas. However, the logical area type information in the AIP is generally unknown for logical areas
created prior to Oracle Rdb release 7.0.1. If the RMU Unload /After_Journal command cannot determine the
logical area type for one or more AIP entries, a warning message is displayed for each such area and may
ultimately return logical dbkeys with a 0 (zero) area number for records stored in mixed—format storage area

In order to update the on-disk logical area type in the AIP, the RMU Repair utility must be used. The
INITIALIZE=LAREA PARAMETERS=optionfile qualifier option file can be used with the TYPE qualifier.
For example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the AREA=name qualifier can be used to identify the specific storage areas the
are to be updated. For example, to repair the EMPLOYEES table of the MF_ PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

* TABLE
Specifies that the logical area is a data table. This would be a table created using the SQL CREATE
TABLE syntax.

* BTREE
Specifies that the logical area is a B-tree index. This would be an index created using the SQL
CREATE INDEX TYPE IS SORTED syntax.

* HASH
Specifies that the logical area is a hash index. This would be an index created using the SQL
CREATE INDEX TYPE IS HASHED syntax.

* SYSTEM
Specifies that the logical area is a system record that is used to identify hash buckets. Users cannot
explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This type does
NOT identify system relations.

* BLOB
Specifies that the logical area is a BLOB repository.

There is no explicit error checking of the type specified for a logical area. However, an incorrect type may
cause the RMU Unload /After_Journal command to be unable to correctly return valid, logical dbkeys.

5.3.4 Do Not Use HYPERSORT with RMU Optimize After Journal
Command

The OpenVMS Alpha V7.1 operating system introduced the high—performance Sort/Merge utility (also
known as HYPERSORT). This utility takes advantage of the OpenVMS Alpha architecture to provide better
performance for most sort and merge operations.

The high—performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high—performance Sort/Merge utility does not support several of the interfaces used by the RMU Optimize
After_Journal command. In addition, the high—performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU Optimize After_Journal command.

Because of this, the use of the high—performance Sort/Merge utility is not supported for the RMU Optimize
After_Journal command. Do not define the logical name SORTSHR to reference HYPERSORT.EXE.

5.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU
Backup

The RMU Backup command no longer accepts both the Include and Exclude qualifiers in the same commar
This change removes the confusion over exactly what gets backed up when Include and Exclude are specif
on the same line, but does not diminish the capabilities of the RMU Backup command.

To explicitly exclude some storage areas from a backup, use the Exclude qualifier to name the storage area
be excluded. This causes all storage areas to be backed up except for those named by the Exclude qualifie!

Similarly, the Include qualifier causes only those storage areas named by the qualifier to be backed up. Any
storage area not named by the Include qualifier is not backed up. The Noread_only and Noworm qualifiers
continue to cause read-only storage areas and WORM storage areas to be omitted from the backup even if

these areas are explicitly listed by the Include qualifier.

Another related change is in the behavior of EXCLUDE=*. In previous versions, EXCLUDE=* caused all
storage areas to be backed up. Beginning with V7.1, EXCLUDE=* causes only a root backup to be done. A
backup created by using EXCLUDE=* can be used only by the RMU Restore Only _Root command.

5.3.6 Default for RMU CRC Qualifier Changing in Future Release

The default behavior for the Crc qualifier for the following RMU commands is changing in a future release of
Oracle Rdb:

* Backup

» Backup After_Journal
» Backup Plan

* Optimize After_Journal

Currently, the default value for the CRC qualifier is:

» Crc=Autodin_ll is the default for NRZ/PE (800/1600 bits/inch) tape drives

» Crc=Checksum is the default for GCR (6250 bits/inch) tape drives and for TA78, TA79, and TA81
tape drives

* Nocrc is the default for TA90 (IBM 3480 class) drives

In a future release, the default value for the CRC qualifier will be Crc=Checksum for all tape drives except
NRZ/PE (800/1600 bits/inch) tape drives. The default qualifier for the NRZ/PE (800/1600 bits/inch) tape
drives will remain Crc=Autodin_Il. The Crc=Checksum qualifier verifies the checksum on each buffer of date
before it is written to tape or disk. This provides end—to—end error detection for the backup file I/O.

Oracle Corporation recommends that you accept the new behavior, that will be the default in a future releas
of Oracle Rdb, for your applications. The default behavior prevents you from including corrupt database
pages in backup files and optimized .aij files. Without the checksum verifications, corrupt data pages in thes
files are not detected when the files are restored. The corruptions on the restored page may not be detectec
until weeks or months after the backup file is created, or it is possible the corruption may not be detected at
all.

5.3.7 RMU Backup Operations Should Use Only One Type of
Tape Drive

When using more than one tape drive for an RMU Backup command, all of the tape drives must be of the
same type (for example, all the tape drives must be TA90s or TZ87s or TK50s). Using different tape drive
types (for example, one TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is not ab
to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the same type of tape drive durin
restore operation, the backup is likely valid. This may be the case, for example, when using a TA90 and a
TA9OE.

Oracle Corporation recommends that, on a regular basis, you test your backup and recovery procedures an
environment using a test system. You should restore the database and then recover using AlJs to simulate
failure recovery of the production system.

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide to Database Design and
Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb backup and
restore operations.

5.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage areas.
These errors indicate that the Space Area Management (SPAM) page fullness threshold for a particular datz
page does not match the actual space usage on the data page. For a further discussion of SPAM pages, co
the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is potentiz
for space on the data page to not be totally utilized, or for a small amount of extra I/O to be expended when
searching for space in which to store new rows. But unless there are many of these errors then the impact
should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle Rdb. When those cases are
discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies. It is also possible for
these errors to be introduced during the normal operation of Oracle Rdb. The following scenario can leave tl
SPAM pages inconsistent:

1. A process inserts a row on a page, and updates the threshold entry on the corresponding SPAM pac
to reflect the new space utilization of the data page. The data page and SPAM pages are not flushec
disk.

2. Another process notifies the first process that it would like to access the SPAM page being held by tt
process. The first process flushes the SPAM page changes to disk and releases the page. Note that
has not flushed the data page.

3. The first process then terminates abnormally (for example, from the DCL STOP/IDENTIFICATION
command). Since that process never flushed the data page to disk, it never wrote the changes to the
Recovery Unit Journal (RUJ) file. Since there were no changes in the RUJ file for that data page thet
the Database Recovery (DBR) process did not need to roll back any changes to the page. The SPAL
page retains the threshold update change made above even though the data page was never flushe
disk.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of synch w
their corresponding data pages, the performance impact would not be trivial. Since these errors are relativel
rare and the impact is not significant, then the introduction of these errors is considered to be part of the
normal operation of Oracle Rdb. If it can be proven that the errors are not due to the scenario above, then
Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following operations:

* Recreate the database by performing:
1.SQL EXPORT
2.SQL DROP DATABASE
3.SQL IMPORT
* Recreate the database by performing:
1. RMU/BACKUP
2.SQL DROP DATABASE
3.RMU/RESTORE
* Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after—image journal (AlJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the RMU/REPAIR
command.

5.4 Known Problems and Restrictions in All
Interfaces for Release 7.0 and Earlier

The following problems and restrictions from release 7.0 and earlier still exist.

5.4.1 Converting Single—File Databases

Because of a substantial increase in the database root file information for V7.0, you should ensure tt
you have adequate disk space before you use the RMU Convert command with single—file database
and V7.0 or higher.

The size of the database root file of any given database increases a minimum of 13 blocks and a
maximum of 597 blocks. The actual increase depends mostly on the maximum number of users
specified for the database.

5.4.2 Row Caches and Exclusive Access

If a table has a row-level cache defined for it, the Row Cache Server (RCS) may acquire a shared
lock on the table and prevent any other user from acquiring a Protective or Exclusive lock on that
table.

5.4.3 Exclusive Access Transactions May Deadlock with
RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access
reserving the table for EXCLUSIVE WRITE and if the table has one or more indexes, you may
experience deadlocks between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

¢ Reserve the table for SHARED WRITE

¢ Close the database and disable row cache for the duration of the exclusive transaction

¢ Change the checkpoint interval for the RCS process to a time longer than the time required tc
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the
interval back to a smaller interval after the checkpoint completes.

5.4.4 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that i
the same as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary va
is a value specified in the WITH LIMIT OF clause. The following example, executed while the

logical name RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:

ATTACH 'FILENAME MF_PERSONNEL;
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12));
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE

STORE USING (ID)

IN EMPIDS_LOW WITH LIMIT OF (200)

IN EMPIDS_MID WITH LIMIT OF (400)

OTHERWISE IN EMPIDS_OVER;

INSERT INTO T1 VALUES (150,'Boney’, MaryJean’);

INSERT INTO T1 VALUES (350,'Morley','Steven’);

INSERT INTO T1 VALUES (300,'Martinez','Nancy");
INSERT INTO T1 VALUES (450,'Gentile’,'Russ");
SELECT * FROM T1 WHERE ID > 400;

Conjunct Get Retrieval sequentially of relation T1
Strict Partitioning: part 2 3

ID LAST_NAME FIRST_NAME

450 Gentile Russ

1 row selected

In the previous example, partition 2 does not need to be scanned. This does not affect the correctne:
of the result. Users can avoid the extra scan by using values other than the boundary values.

5.4.5 Restriction When Adding Storage Areas with Users
Attached to Database

If you try to interactively add a new storage area where the page size is less than the existing page <
and the database has been manually opened or users are active, the add operation fails with the
following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKAO:[RDB]TEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is ¢
to OPEN IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are basec
on the minimum page size and these structures cannot be resized if users are attached to the datab:

Furthermore, because this particular change is not recorded in the AlJ, any recovery scenario fails.
Note also that if you use .aij files, you must backup the database and restart after—image journaling
because this change invalidates the current AlJ recovery.

5.4.6 Support for Single—File Databases to Be Dropped in a
Future Release

Oracle Rdb currently supports both single—file and multifile databases on all platforms. However,
single—file databases will not be supported in a future release of Oracle Rdb. At that time, Oracle Rd
will provide the means to easily convert single—file databases to multifile databases.

Oracle Rdb recommends that users with single—file databases perform the following actions:

¢ Use the Oracle RMU commands, such as Backup and Restore, to make copies, backup, or
move single—file databases. Do not use operating system commands to copy, back up, or
move databases.

¢ Create new databases as multifile databases even though single—file databases are supporte

5.4.7 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes
inconsistent, and is detected immediately during failover. (Failover is the recovery of an application
by restarting it on another computer.) The problem is rare, and occurs because only single—block 1/C
operations are guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area—level restore operation. Database integrity is not compromised, but the
affected area is not available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write
operations. Cluster failovers will automatically cause the recovery of multiblock pages, and no
manual intervention will be required.

5.4.8 Network Link Failure Does Not Allow DISCONNECT to
Clean Up Transactions

If a program attaches to a database on a remote node and it loses the connection before the COMM
statement is issued, there is nothing you can do except exit the program and start again.

The problem occurs when a program is connected to a remote database and updates the database,
then just before it commits, the network fails. When the commit executes, SQL shows, as it normally
should, that the program has lost the link. Assume that the user waits for a minute or two, then tries
the transaction again. The problem is that when the start transaction is issued for the second time, it
fails because old information still exists about the previous failed transaction. This occurs even if the
user issues a DISCONNECT statement (in V4.1 and earlier, a FINISH statement), which also fails
with an RDB-E-10O_ERROR error message.

5.4.9 Replication Option Copy Processes Do Not Process
Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor)
begins running after an application has begun modifying the database, the copy processes catch up
the application and are not able to process database pages that are logically ahead of the applicatiol
the RDB$CHANGES system relation. The copy processes all align waiting for the same database
page and do not move on until the application has released it. The performance of each copy proces
degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates the
RDB$TRANSFERS system relation and then tries to delete any RDB$SCHANGES rows not needed
by any transfers. During this process, the RDB$CHANGES table cannot be updated by any
application process, holding up any database updates until the deletion process is complete. The
application stalls while waiting for the RDB$CHANGES table. The resulting contention for
RDB$CHANGES SPAM pages and data pages severely impacts performance throughput, requiring
user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as latches. These latches
are held only for the duration of an action on the page and not to the end of transaction. The page
locks also have blocking asynchronous system traps (ASTs) associated with them. Therefore,
whenever a process requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the fact that the pag
lock should be released as soon as possible. However, the page lock cannot be released immediate

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is a
Oracle Rdb query that executes atomically, within a transaction. Therefore, verbs that require the sc:
of a large table, for example, can be quite long. An updating application does not release page locks
until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the databa:

management system.

5.5 SQL Known Problems and Restrictions for
Oracle Rdb Release 7.0 and Eatrlier

The following problems and restrictions from Oracle Rdb Release 7.0 and earlier still exist.

5.5.1 SQL Does Not Display Storage Map Definition After
Cascading Delete of Storage Area

When you drop a storage area using the CASCADE keyword and that storage area is not the only ar
to which the storage map refers, the SHOW STORAGE MAP statement no longer shows the
placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1

Compression is: ENABLED

Partitioning is: NOT UPDATABLE

Store clause: STORE USING (EMPLOYEE_ID)
IN DEG_AREA WITH LIMIT OF ('00250")
OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;

SQL> —- Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;

SQL> —- Display the storage map definition.

SQL> ATTACH 'FILENAME MF_PERSONNEL";

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1 For Table: DEGREES1

Compression is: ENABLED

Partitioning is: NOT UPDATABLE

The other storage area, DEG_AREAZ2, still exists, even though the SHOW STORAGE MAP
statement does not display it.

A workaround is to use the RMU Extract command with the ltems=Storage_Map qualifier to see the
mapping.

5.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2 and V5.1, but run
under higher versions of Oracle Rdb, may result in incorrect results or %RDB-E-ARITH_EXCEPT
exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile and relink under a
higher version (V6.0 or higher.)

5.5.3 Different Methods of Limiting Returned Rows from
Queries

You can establish the query governor for rows returned from a query by using either the SQL SET
QUERY LIMIT statement or a logical name. This note describes the differences between the two
mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value, the query often fails
with no rows returned regardless of the value assigned to the logical. The following example
demonstrates setting the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10

$ SQLS$

SQL> ATTACH 'FILENAME MF_PERSONNEL";

SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;

%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded
—-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that the
column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system relations
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to a
number less than 100 (the cardinality of EMPLOYEES) but more than the number of columns in
EMPLOYEES (that is, the number of rows to read from the RDB$SRELATION_FIELDS system
relation) is sufficient to read each column definition.

To see an indication of the queries executed against the system relations, define the
RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same query, it returns the
number of rows specified by the SQL SET QUERY statement before failing:

SQL> ATTACH 'FILENAME MF_PERSONNEL";
SQL> SET QUERY LIMIT ROWS 10;

SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID

00164

00165

00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore, the queries
used to load the metadata cache are not restricted in any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and module processor command line
qualifiers (QUERY_MAX_ROWS and SQLOPTIONS=QUERY_MAX_ROWS) only limit user
queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other interfaces that
read the Oracle Rdb system relations as part of query processing.

5.5.4 Suggestions for Optimal Use of SHARED DATA
DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

1.
2.

3.
4.
5.
6.

Process the metadata.

Lock the index name.

Because new metadata (which includes the index name) is not written to disk until the end of
the index process, Oracle Rdb must ensure index name uniqueness across the database dur
this time by taking a special lock on the provided index name.

Read the table for sorting by selected index columns and ordering.

Sort the key data.

Build the index (includes partitioning across storage areas).

Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system relation and indexes are
locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR
SHARED DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of
this capability, Oracle Rdb suggests the following guidelines:

¢

You should commit the transaction immediately after the CREATE INDEX statement so that
locks on the table are released. This avoids lock conflicts with other index definers and
improves overall concurrency.

By assigning the location of the temporary sort work files SORTWORKO, SORTWORK]1, ...

, SORTWORK® to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes
any possible disk 1/0 bottlenecks and allows overlap of the SORT read/write cycle.

If possible, enable global buffers and specify a buffer number large enough to hold a
sufficient amount of table data. However, do not define global buffers larger than the
available system physical memory. Global buffers allow sharing of database pages and thus
result in disk 1/0 savings. That is, pages are read from disk by one of the processes and then
shared by the other index definers for the same table, reducing the I/O load on the table.

If global buffers are not used, ensure that enough local buffers exist to keep much of the inde
cached (use the RDM$BIND_BUFFERS logical name or the NUMBER OF BUFFERS IS
clause in SQL to change the number of buffers).

To distribute the disk 1/O load, store the storage areas for the indexes on separate disk drives
Note that using the same storage area for multiple indexes results in contention during the
index creation (Step 5) for SPAM pages.

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used
disk.

Even though snapshot I/O should be minimal, consider disabling snapshots during parallel
index creation.

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to determine the
appropriate working set values for each process to minimize excessive paging activity. In
particular, avoid using working set parameters where the difference between WSQUOTA anc
WSEXTENT is large. The SORT utility uses the difference between these two values to
allocate scratch virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page faulting.

The performance benefits of using SHARED DATA DEFINITION can best be observed
when creating many indexes in parallel. The benefit is in the average elapsed time, not in
CPU or I/O usage. For example, when two indexes are created in parallel using the SHAREL
DATA DEFINITION clause, the database must be attached twice, and the two attaches each

use separate system resources.
¢ Using the SHARED DATA DEFINITION clause on a single—file database or for indexes

defined in the RDB$SYSTEM storage area is not recommended.
The following table displays the elapsed time benefit when creating multiple indexes in parallel with
the SHARED DATA DEFINITION clause. The table shows the elapsed time for ten parallel process
index creations (Index1, Index2, ... Index10) and one process with ten sequential index creations
(All10). In this example, global buffers are enabled and the number of buffers is 500. The longest
time for a parallel index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
ten indexes sequentially with an elapsed time of 00:03:26.66. The longest single parallel create inde:
elapsed time is shorter than the elapsed time of creating all ten of the indexes serially.

Table 5-2 Elapsed Time for Index Creations

Index Create Job|Elapsed Time
Index1 00:02:22.50
Index2 00:01:57.94
Index3 00:02:06.27
Index4 00:01:34.53
Index5 00:01:51.96
Index6 00:01:27.57
Index7 00:02:34.64
Index8 00:01:40.56
Index9 00:01:34.43
Index10 00:01:47.44
All10 00:03:26.66

5.5.5 Side Effect When Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a
stored function. For example, if the routine being called is also called by a stored function during the
calculation of an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the
arguments for another invocation of the stored procedure P:

SQL> create module M

cont> lang SQL

cont>

cont> procedure P (in :ainteger, in :b integer, out :c integer);
cont> begin

cont> set:c=:a+:b;

cont> end;

cont>

cont> function F () returns integer

cont> comment is 'expect F to always return 2';
cont> begin

cont> declare :b integer;

cont> callP (1,1, :b);

cont> trace 'returning ', :b;

cont> return :b;

cont> end;

cont> end module;

SQL>

SQL> set flags 'TRACE';

SQL> begin

cont> declare :cc integer;

cont> call P (2, F(), :cc);

cont> trace 'Expected 4, got ', :cc;
cont> end;

~Xt: returning 2

~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine
parameter area before complex expression values are calculated. These calculations may (as in the
example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F)
a temporary variable and pass this variable as the input for the routine. The following example show:
the workaround:

SQL> begin

cont> declare :bb, :cc integer;
cont> set :bb = F();

cont> call P (2, :bb, :cc);

cont> trace 'Expected 4, got ', :cc;
cont> end;

~Xt: returning 2

~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

5.5.6 Considerations When Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement is
executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted,
updated, and deleted by other users because no locks are held on the rows selected by the holdable
cursor after a commit or rollback occurs. Moreover, depending on the access strategy, rows not yet
fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

¢ If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached r
be stale by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read b
user 1 (this is possible because the read locks are released). It is possible for user 1 to repor
data now deleted and committed.
¢ If the access strategy uses indexes that allow duplicates, updates to the duplicates chain ma:
cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was
fetched. However, the duplicates chain could be revised by the time Oracle Rdb returns to
using it.
Holdable cursors are a very powerful feature for read—only or predominantly read—only
environments. However, in concurrent update environments, the instability of the cursor may not be
acceptable. The stability of holdable cursors for update environments will be addressed in future
versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to the value 1 to force all

hold cursors to fetch the result set into a cached data area. (The cached data area appears as a
"Temporary Relation" in the optimizer strategy displayed by the SET FLAGS 'STRATEGY"
statement or the RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor to

some degree.

Previous | Contents | Contents

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	November 2001
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.1.0.1
	1.1 Requirements
	1.2 Invoking VMSINSTAL
	1.3 Stopping the Installation
	1.4 After Installing Oracle Rdb
	1.5 Alpha EV68 Processor Support Added
	1.6 Maximum OpenVMS Version Check Added
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.1.0.1
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Excessive Disk I/O for DROP TABLE and TRUNCATE TABLE
	2.1.2 LIST Storage Map Not Updated Upon ALTER or DROP TABLE
	2.1.3 ARBs Exhausted
	2.1.4 CLEAN BUFFER COUNT Parameter Not Obeyed
	2.1.5 DETECTED ASYNCHRONOUS PREFETCH THRESHOLD Not Obeyed
	2.1.6 Page Locks Not Demoted at End of Transaction When FAST COMMIT Enabled
	2.1.7 Bitmapped Scan Causes Bugcheck on Transaction Termination
	2.1.8 Problems With Column Outlines
	2.1.9 Count Scan Optimization Incorrectly Returning Count of 0
	2.1.10 Disabling AIJ When Row Cache Recovery Required
	2.1.11 Bitmapped Scan Problem With Large Indexes
	2.1.12 Query With Range List OR Predicates Returns Wrong Results
	2.1.13 Database Corruption Using Cluster With Galaxy and Non-Galaxy Nodes
	2.1.14 Performance Problems when RDM$BIND_SNAP_QUIET_POINT Defined to 0
	2.1.15 Workload Ignored When Loaded with RMU/INSERT OPTIMIZER_STATISTICS
	2.1.16 Descending Sort Not Producing Correct Ordering for BIGINT and DATE Columns
	2.1.17 Bitmapped Scan Incorrectly Chosen by Optimizer
	2.1.18 Cannot Connect With Remote Access When Using a Logical
	2.1.19 Query Joining Derived Tables of Union Legs With Empty Tables Returns Wrong Results
	2.1.20 Left Outer Join Query With OR Predicate Returns Wrong Results
	2.1.21 Query Using Match Strategy With DISTINCT Function Returns Wrong Results
	2.1.22 GROUP BY Query With SUM Aggregate Returns Wrong Results
	2.1.23 ROLLBACK Hangs Under DECdtm When Called From an ACMS CANCEL Procedure
	2.1.24 COMPUTED BY Columns Now Automatically Reserve Referenced Tables

	2.2 SQL Errors Fixed
	2.2.1 Command Line Recall Expanded to 255 Lines
	2.2.2 New Minimum Value for the INTERVAL Leading Precision
	2.2.3 Incorrect Processing of CASE Expression
	2.2.4 ALTER TABLE Not Dropping NOT NULL Constraints When NULL Clause Used
	2.2.5 Some Constraint Definitions Not Supported for AUTOMATIC Columns
	2.2.6 %RDB-E-NO_DIST_BATCH_U Error When Executing SET TRANSACTION
	2.2.7 Select With Identical "not in" Clauses
	2.2.8 Keyword Matching Now Reported by Interactive SQL
	2.2.9 CREATE MODULE Bugchecks When a Subselect is Used as a Parameter DEFAULT
	2.2.10 Obsolete Metadata Errors When Using Rdb SQL V7.1 to Access Oracle Rdb V7.0 Databases
	2.2.11 SQL$PRE and SQL$MOD Performance Improvements
	2.2.12 Incompatible Character Sets Not Detected by SQL Interface
	2.2.13 SQLMOD Fails to Set Default Character Set Correctly

	2.3 Oracle RMU Errors Fixed
	2.3.1 RMU Extract Not Formatting View Column Expressions Correctly
	2.3.2 RMU/UNLOAD/AFTER_JOURNAL Fragmented Records Clarification
	2.3.3 RMU/DUMP/BACKUP Did Not Check the VMS BYPASS Privilege
	2.3.4 RMU/BACKUP Invalid Volume 1 Tape Label When Used With COMPAQ SLS
	2.3.5 RMU/ANALYZE/CARDINALITY Fails on Databases With Local Temporary Tables
	2.3.6 File Name Not Displayed By RMU /RESTORE for Extend Failure
	2.3.7 RMU/SHOW STATISTICS Allowed Suspend of Disabled ABS
	2.3.8 RMU/COPY/BLOCKS_PER_PAGE Can Corrupt Copied Database Uniform Areas
	2.3.9 DROPped Storage Area and RMU /VERIFY in Cluster
	2.3.10 RMU /VERIFY Checks All Storage Area Files First
	2.3.11 RMU/SHOW STATISTICS Multi-Page Report File
	2.3.12 Area Locks Demoted Statistic Not Always Correctly Incremented
	2.3.13 RMU /BACKUP /ONLINE /NOQUIET_POINT Fails

	2.4 LogMiner Errors Fixed
	2.4.1 LogMiner Compresses Pre-Delete Record Content

	2.5 Optimizer Problems Fixed in Oracle Rdb Release 7.1.0.
	2.5.1 Query Having OR Compound Predicates With Subquery Returns Wrong Results
	2.5.2 Query Using OR/AND Predicates With EXISTS Clause Returns Wrong Results
	2.5.3 Query Using German Collating Sequence Returns Wrong Results
	2.5.4 Left Outer Join Query Returns Wrong Results When ON Clause Evaluates to False
	2.5.5 Query With Two IN Clauses on Two Subqueries Returns Wrong Results
	2.5.6 Query Having Same SUBSTRINGs Within CASE Expression Returns Wrong Results
	2.5.7 Aggregate Query With Nested MIN Function Returns Wrong Results
	2.5.8 Query with UNION Subselect Returns Wrong Results
	2.5.9 Query with CONCATENATE in BETWEEN Clause Returns Wrong Results
	2.5.10 ORDER BY Query With GROUP BY on Two Joined Derived Tables Returns Wrong Results
	2.5.11 Left Outer Join Query With CONCATENATE Returns Wrong Results
	2.5.12 Query With UNION in German Collating Sequence Returns Wrong Results
	2.5.13 Query With OR Predicate on Aggregate Column Returns Wrong Results
	2.5.14 Query With Equality Predicate Included in IN Clause Returns Wrong Results
	2.5.15 Match Strategy on Columns of Different Size, Using Collating Sequence, Returns Wrong Results
	2.5.16 Left Outer Join Query With CAST Function on USING Column Bugchecks
	2.5.17 Query Using Constant Values in OR Predicates Returns Wrong Results

	Chapter 3Enhancements
	3.1 Enhancements Provided in Oracle Rdb Release 7.1.0.1
	3.1.1 SQL Now Supports a Native ABS Function
	3.1.2 New DUMP Output Format for LogMiner
	3.1.3 Data and SPAM Prefetch Screens Added to RMU/SHOW STATISTICS
	3.1.4 RMU/SHOW STATISTICS Stall Log Lock Information Optional
	3.1.5 New Option for the GET DIAGNOSTICS Statement
	3.1.6 Alternate Outline Ids
	3.1.7 Field Widths Wider on Row Cache Overview Display
	3.1.8 FOR Counted Loop Enhancements
	3.1.9 Enhancements to SET DISPLAY Statement for Interactive SQL
	3.1.10 New BITSTRING Built In Function
	3.1.11 New SET PAGE LENGTH Command for Interactive SQL
	3.1.12 New ALTER CONSTRAINT Statement
	3.1.13 DECLARE Variable Now Supports CHECK Constraint
	3.1.14 RMU/SHOW STATISTICS Active User Stall Messages Sorted by Process ID
	3.1.15 RMU /REPAIR /INITIALIZE ONLY_LAREA_TYPE Keyword
	3.1.16 RMU/SHOW STATISTICS Cluster Data Collection Performance Enhancement
	3.1.17 RMU Extract has Enhanced Extract of Conditional Expressions

	Chapter 4Documentation Corrections, Additions and Changes
	4.1 Documentation Corrections
	4.1.1 DROP INDEX Now an Online Table Operation

	4.2 Address and Phone Number Correction for Documentation
	4.3 Online Document Format and Ordering Information
	4.3.1 Documentation in Adobe Acrobat Format
	4.3.2 Documentation in HTML format

	4.4 Documentation for This Release
	4.5 Updated Documentation for Oracle Rdb-related Products
	4.6 New and Changed Features in Oracle Rdb Release 7.1
	4.6.1 PERSONA is Supported in Oracle SQL/Services
	4.6.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited Identifiers
	4.6.3 Only=select_list Qualifier for the RMU Dump After_Journal Command

	4.7 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases
	4.7.1 Restrictions Lifted on After-Image Journal Files
	4.7.2 Changes to RMU Replicate After_Journal ... Buffer Command
	4.7.3 Unnecessary Command in the Hot Standby Documentation
	4.7.4 Change in the Way RDMAIJ Server is Set Up in UCX
	4.7.5 CREATE INDEX Operation Supported for Hot Standby

	4.8 Oracle Rdb7 for OpenVMS Installation and Configuration Guide
	4.8.1 Suggestion to Increase GH_RSRVPGCNT Removed
	4.8.2 Prerequisite Software
	4.8.3 Defining the RDBSERVER Logical Name

	4.9 Guide to Database Design and Definition
	4.9.1 Lock Timeout Interval Logical Incorrect
	4.9.2 Example 4-13 and Example 4-14 Are Incorrect

	4.10 Oracle Rdb7 SQL Reference Manual
	4.10.1 Clarification of the DDLDONOTMIX Error Message
	4.10.2 Node Specification Allowed on Root FILENAME Clauses
	4.10.3 Incorrect Syntax Shown for Routine-Clause of the CREATE MODULE Statement
	4.10.4 Omitted SET Statements
	4.10.4.1 QUIET COMMIT
	4.10.4.2 COMPOUND TRANSACTIONS

	4.10.5 Size Limit for Indexes with Keys Using Collating Sequences
	4.10.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS
	4.10.7 Incorrect Syntax for CREATE STORAGE MAP Statement
	4.10.8 Use of SQL_SQLCA Include File Intended for Host Language File
	4.10.9 Missing Information on Temporary Tables

	4.11 Oracle RMU Reference Manual, Release 7.0
	4.11.1 RMU Unload After_Journal Null Bit Vector Clarification
	4.11.2 New Transaction_Mode Qualifier for Oracle RMU Commands
	4.11.3 RMU Server After_Journal Stop Command
	4.11.4 Incomplete Description of Protection Qualifier for RMU Backup After_Journal Command
	4.11.5 RMU Extract Command Options Qualifier
	4.11.6 RDM$SNAP_QUIET_POINT Logical is Incorrect
	4.11.7 Using Delta Time with RMU Show Statistics Command

	4.12 Oracle Rdb7 Guide to Database Performance and Tuning
	4.12.1 Dynamic OR Optimization Formats
	4.12.2 Oracle Rdb Logical Names
	4.12.3 Waiting for Client Lock Message
	4.12.4 RDMS$TTB_HASH_SIZE Logical Name
	4.12.5 Error in Updating and Retrieving a Row by Dbkey Example 3-22
	4.12.6 Error in Calculation of Sorted Index in Example 3-46
	4.12.7 Documentation Error in Section C.7
	4.12.8 Missing Tables Descriptions for the RDBEXPERT Collection Class
	4.12.9 Missing Columns Descriptions for Tables in the Formatted Database
	4.12.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database
	4.12.11 Using Oracle TRACE Collected Data
	4.12.12 AIP Length Problems in Indexes that Allow Duplicates
	4.12.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification

	4.13 Oracle Rdb7 Guide to SQL Programming
	4.13.1 Location of Host Source File Generated by the SQL Precompiler
	4.13.2 Remote User Authentication
	4.13.3 Additional Information About Detached Processes

	4.14 Guide to Using Oracle SQL/Services Client APIs
	4.15 Updates to System Relations
	4.15.1 Clarification on Updates to the RDB$LAST_ALTERED Column for the RDB$DATABASE System Relation
	4.15.2 Missing Descriptions of RDB$FLAGS

	4.16 Error Messages
	4.16.1 Clarification of the DDLDONOTMIX Error Message

	Chapter 5Known Problems and Restrictions
	5.1 Known Problems and Restrictions in All Interfaces
	5.1.1 RDB-E-ARITH_EXCEPT Error From the Rdb Optimizer
	5.1.2 RMU Fails to Perform OPTIMIZER_STATISTICS Actions on Some Databases
	5.1.3 Possible RMU Bugcheck or Failure to Notify Triggering of User Defined Events
	5.1.4 Optimization of Check Constraints
	5.1.5 Using Databases from Releases Earlier Than V5.1
	5.1.6 PAGE TRANSFER VIA MEMORY Disabled
	5.1.7 Carryover Locks and NOWAIT Transaction Clarification
	5.1.8 Unexpected Results Occur During Read-Only Transactions on a Hot Standby Database
	5.1.9 IMPORT Unable to Import Some View Definitions
	5.1.10 Both Application and Oracle Rdb Using SYS$HIBER
	5.1.11 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
	5.1.12 Read-only Transactions Fetch AIP Pages Too Often
	5.1.13 Row Cache Not Allowed While Hot Standby Replication is Active
	5.1.14 Excessive Process Page Faults and other Performance Considerations During Oracle Rdb Sorts
	5.1.15 Control of Sort Work Memory Allocation
	5.1.16 The Halloween Problem

	5.2 SQL Known Problems and Restrictions
	5.2.1 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not Compatible With Previous Releases
	5.2.2 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME
	5.2.3 Problem Exporting and Importing Sequences with ANSI-Style Databases
	5.2.4 System Relation Change for International Database Users
	5.2.5 Single Statement CALL Does Not Support Truncated Parameter List or DEFAULT Keyword
	5.2.6 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL Precompiler
	5.2.7 Restriction for CREATE STORAGE MAP Statement on Table with Data
	5.2.8 Multistatement or Stored Procedures May Cause Hangs
	5.2.9 Use of Oracle Rdb from Shareable Images

	5.3 Oracle RMU Known Problems and Restrictions
	5.3.1 RMU/CONVERT Fails to Correctly Define the RDB$WORKLOAD Table
	5.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded
	5.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information
	5.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command
	5.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup
	5.3.6 Default for RMU CRC Qualifier Changing in Future Release
	5.3.7 RMU Backup Operations Should Use Only One Type of Tape Drive
	5.3.8 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

	5.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier
	5.4.1 Converting Single-File Databases
	5.4.2 Row Caches and Exclusive Access
	5.4.3 Exclusive Access Transactions May Deadlock with RCS Process
	5.4.4 Strict Partitioning May Scan Extra Partitions
	5.4.5 Restriction When Adding Storage Areas with Users Attached to Database
	5.4.6 Support for Single-File Databases to Be Dropped in a Future Release
	5.4.7 Multiblock Page Writes May Require Restore Operation
	5.4.8 Network Link Failure Does Not Allow DISCONNECT to Clean Up Transactions
	5.4.9 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application

	5.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier
	5.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area
	5.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	5.5.3 Different Methods of Limiting Returned Rows from Queries
	5.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation
	5.5.5 Side Effect When Calling Stored Routines
	5.5.6 Considerations When Using Holdable Cursors

